新四季網

一種低汙泥產率的煤化工廢水高效處理方法與流程

2023-12-06 16:18:16

本發明涉及廢水處理領域,具體的涉及一種低汙泥產率的煤化工廢水高效處理方法。



背景技術:

煤化廢水的組成複雜、多變,這取決於原煤性質、碳化溫度、煤化產品回收工序與方法等因素。因此,有關其成分的分析,一直是環境分析工作者研究的重點。有文獻討論了氣相色譜—質譜聯用儀(GC/MS)的分析條件並用液—液萃取和C18與矽脫微柱層析法對水樣進行前處理,測出了244種有機汙染物。其中酸性萃取液129種,鹼中性萃取液115種,進水中檢出37種酚,含量較高;其次為吡啶、喹啉類、苯胺、苯系物以及聯苯、呋喃類、咔唑、吲哚、己烷、萘、噻吩等雜環化合物;及少量醇、醛、酸、酯、芳烴類如熒蒽、芘、並四苯、苯並蒽、苯並菲、苯並熒蒽和苯並芘等。以前我國有相當比例的煤化廠採用傳統活性汙泥法處理焦化廢水。

目前,煤化廢水處理方法總體上可歸納為3種類型:一是物化法,主要包括蒸氨法、焚燒法、混凝沉澱法、稀釋氣體、吸附法等,物化法雖然具有投資少、操作容易、能耗低、對氣溫的變化適應性強、能回收廢水中有用組分等優點,但物化法去除效率較低,尤其是對廢水中小分子有機物的去除率很低,往往只能作為廢水的預處理。二是生化法,主要包括普通活性汙泥法、PACT法、PSB活性汙泥法、A/B法、A/O法、A2/O法、SBR法等,生化法作為廢水處理的主體方法,工藝比較成熟,處理效率較高,在廢水處理中得到了廣泛應用,但由於煤化廢水NH4+—N和COD含量高,成分複雜,可生化性差,由單獨的生化工藝很難保證煤化廢水能夠達標排放標準。三是化學法,主要包括Fenton試劑氧化法、催化溼式氧化法、光化學處理法等,這些方法往往只能對廢水中某些汙染物具有較高的去處效率,不能保證對所有汙染物都有較高的去處效率。因此,對於煤化工廢水需要各種處理方法聯合使用。



技術實現要素:

本發明的目的是提供一種低汙泥產率的煤化工廢水高效處理方法,該方法可以有效除去煤化工廢水中的汙染物,對水體無二次汙染,且效率高。

為了實現上述目的,本發明採用以下技術方案:

一種低汙泥產率的煤化工廢水高效處理方法,包括以下步驟:

(1)將FeCl3·6H2O和FeCl2·4H2O溶解於蒸餾水中,然後轉移至三口燒瓶中,在90-100℃、氮氣氣氛下攪拌混合1-3h,然後逐滴加入濃氨水調節pH至8.5-10,冷卻至室溫,磁鐵分離後,用蒸餾水洗滌3-5次,乾燥得到四氧化三鐵納米球;

(2)將步驟(1)製得的四氧化三鐵納米球分散於蒸餾水、無水乙醇、濃氨水的混合液中,然後在恆溫水槽中超聲振動2-5h,然後逐滴加入正矽酸四乙酯,並繼續磁力攪拌10-13h,磁鐵分離,得到的沉澱用無水乙醇洗滌2-4次,乾燥研磨得到Fe3O4/SiO2納米球;

(3)將煤化工廢水首先經過濾器除掉廢水中較小的漂浮物,然後將廢水泵入到混凝沉澱池中,並向混凝沉澱池中加入混凝劑,攪拌5-10min,然後靜置沉澱1-5h,上清液廢水加入到ABR反應器中進行降解,ABR反應器降解後的廢水進入中沉池中,進行固液分離,分離後的廢水進入到序批式活性汙泥反應器中,然後加入步驟(2)製得的Fe3O4/SiO2納米球和乙酸鈉,機械攪拌3-7min,處理是在10-20℃下,每天循環2-3個周期,每個周期為8-15h,其中,每一個周期內的進水時間為5-10min,曝氣時間為4-11h,沉澱時間為5-12min,剩餘時間為閒置;

(4)將步驟(3)處理後的煤化工廢水泵入到沉澱池中,沉澱處理2-6h,處理產生的汙泥全部回流到ABR反應器中,然後將步驟(3)中沉池中的剩餘汙泥回流到ABR反應器中;將所述ABR反應器產生的剩餘汙泥排進汙泥池,然後將汙泥中的Fe3O4/SiO2納米球用磁鐵吸出重複利用。

作為上述技術方案的優選,步驟(2)中,所述四氧化三鐵納米球、正矽酸四乙酯的摩爾比為1:1。

作為上述技術方案的優選,步驟(2)中,所述蒸餾水、無水乙醇、濃氨水、正矽酸四乙酯的體積比為(10-20):60:(1-2):(0.25-0.5)。

作為上述技術方案的優選,步驟(3)中,所述混凝劑為聚丙烯醯胺、聚合硫酸鋁鐵的混合物,二者質量比為1:1。

作為上述技術方案的優選,步驟(3)中,所述混凝劑的添加濃度為50-100mg/L。

作為上述技術方案的優選,步驟(3)中,所述活性汙泥反應器內接種的普通活性汙泥的體積為所述活性汙泥反應器體積的40-60%。

作為上述技術方案的優選,步驟(3)中,所述Fe3O4/SiO2納米球的添加量為0.3-1g/L。

作為上述技術方案的優選,步驟(3)中,所述乙酸鈉的添加量為0.1-0.6g/L。

與現有技術相比,本發明具有以下優點:

本發明採用好氧汙泥來處理廢水,處理時在好氧汙泥中加入自製的Fe3O4/SiO2納米球,其可以有效促進好氧汙泥的顆粒化,Fe3O4/SiO2納米球在好氧汙泥中分散性好,從而提高了好氧汙泥顆粒化程度,且Fe3O4/SiO2納米球的加入有效提高了廢水中有機汙染物的去除率;本發明還在好氧汙泥中加入適量的乙酸鈉,其可以有效提高汙染物的去除率;

而且本發明採用聚丙烯醯胺、聚合硫酸鋁鐵的混合物,並控制二者質量比為1:1,該混凝劑可以有效去除廢水中的汙染物,且本發明將處理過程中產生的汙泥重複利用,有效降低了汙泥的剩餘量。

具體實施方式:

為了更好的理解本發明,下面通過實施例對本發明進一步說明,實施例只用於解釋本發明,不會對本發明構成任何的限定。

實施例1

一種低汙泥產率的煤化工廢水高效處理方法,包括以下步驟:

(1)將FeCl3·6H2O和FeCl2·4H2O溶解於蒸餾水中,然後轉移至三口燒瓶中,在90-100℃、氮氣氣氛下攪拌混合1h,然後逐滴加入濃氨水調節pH至8.5-10,冷卻至室溫,磁鐵分離後,用蒸餾水洗滌3-5次,乾燥得到四氧化三鐵納米球;

(2)將步驟(1)製得的四氧化三鐵納米球分散於蒸餾水、無水乙醇、濃氨水的混合液中,然後在恆溫水槽中超聲振動2h,然後逐滴加入正矽酸四乙酯,並繼續磁力攪拌10h,磁鐵分離,得到的沉澱用無水乙醇洗滌2-4次,乾燥研磨得到Fe3O4/SiO2納米球;其中,四氧化三鐵納米球、正矽酸四乙酯的摩爾比為1:1;蒸餾水、無水乙醇、濃氨水、正矽酸四乙酯的體積比為10:60:1:0.25;

(3)將煤化工廢水首先經過濾器除掉廢水中較小的漂浮物,然後將廢水泵入到混凝沉澱池中,並向混凝沉澱池中加入混凝劑,攪拌5min,然後靜置沉澱1h,上清液廢水加入到ABR反應器中進行降解,ABR反應器降解後的廢水進入中沉池中,進行固液分離,分離後的廢水進入到序批式活性汙泥反應器中,然後加入步驟(2)製得的Fe3O4/SiO2納米球和乙酸鈉,機械攪拌3min,處理是在10-20℃下,每天循環2-3個周期,每個周期為8h,其中,每一個周期內的進水時間為5min,曝氣時間為4h,沉澱時間為5min,剩餘時間為閒置;

其中,混凝劑為聚丙烯醯胺、聚合硫酸鋁鐵的混合物,二者質量比為1:1,混凝劑的添加量為50mg/L;活性汙泥反應器內接種的普通活性汙泥的體積為所述活性汙泥反應器體積的40%;Fe3O4/SiO2納米球的添加量為0.3g/L;乙酸鈉的添加量為0.1g/L;

(4)將步驟(3)處理後的煤化工廢水泵入到沉澱池中,沉澱處理2-6h,處理產生的汙泥全部回流到ABR反應器中,然後將步驟(3)中沉池中的剩餘汙泥回流到ABR反應器中;將所述ABR反應器產生的剩餘汙泥排進汙泥池,然後將汙泥中的Fe3O4/SiO2納米球用磁鐵吸出重複利用。

實施例2

一種低汙泥產率的煤化工廢水高效處理方法,包括以下步驟:

(1)將FeCl3·6H2O和FeCl2·4H2O溶解於蒸餾水中,然後轉移至三口燒瓶中,在90-100℃、氮氣氣氛下攪拌混合3h,然後逐滴加入濃氨水調節pH至8.5-10,冷卻至室溫,磁鐵分離後,用蒸餾水洗滌3-5次,乾燥得到四氧化三鐵納米球;

(2)將步驟(1)製得的四氧化三鐵納米球分散於蒸餾水、無水乙醇、濃氨水的混合液中,然後在恆溫水槽中超聲振動5h,然後逐滴加入正矽酸四乙酯,並繼續磁力攪拌13h,磁鐵分離,得到的沉澱用無水乙醇洗滌2-4次,乾燥研磨得到Fe3O4/SiO2納米球;其中,四氧化三鐵納米球、正矽酸四乙酯的摩爾比為1:1;蒸餾水、無水乙醇、濃氨水、正矽酸四乙酯的體積比為20:60:2:0.5;

(3)將煤化工廢水首先經過濾器除掉廢水中較小的漂浮物,然後將廢水泵入到混凝沉澱池中,並向混凝沉澱池中加入混凝劑,攪拌10min,然後靜置沉澱5h,上清液廢水加入到ABR反應器中進行降解,ABR反應器降解後的廢水進入中沉池中,進行固液分離,分離後的廢水進入到序批式活性汙泥反應器中,然後加入步驟(2)製得的Fe3O4/SiO2納米球和乙酸鈉,機械攪拌7min,處理是在10-20℃下,每天循環2-3個周期,每個周期為15h,其中,每一個周期內的進水時間為10min,曝氣時間為11h,沉澱時間為12min,剩餘時間為閒置;

其中,混凝劑為聚丙烯醯胺、聚合硫酸鋁鐵的混合物,二者質量比為1:1,混凝劑的添加量為100mg/L;活性汙泥反應器內接種的普通活性汙泥的體積為所述活性汙泥反應器體積的60%;Fe3O4/SiO2納米球的添加量為1g/L;乙酸鈉的添加量為0.6g/L;

(4)將步驟(3)處理後的煤化工廢水泵入到沉澱池中,沉澱處理6h,處理產生的汙泥全部回流到ABR反應器中,然後將步驟(3)中沉池中的剩餘汙泥回流到ABR反應器中;將所述ABR反應器產生的剩餘汙泥排進汙泥池,然後將汙泥中的Fe3O4/SiO2納米球用磁鐵吸出重複利用。

實施例3

一種低汙泥產率的煤化工廢水高效處理方法,包括以下步驟:

(1)將FeCl3·6H2O和FeCl2·4H2O溶解於蒸餾水中,然後轉移至三口燒瓶中,在90-100℃、氮氣氣氛下攪拌混合1.5h,然後逐滴加入濃氨水調節pH至8.5-10,冷卻至室溫,磁鐵分離後,用蒸餾水洗滌3-5次,乾燥得到四氧化三鐵納米球;

(2)將步驟(1)製得的四氧化三鐵納米球分散於蒸餾水、無水乙醇、濃氨水的混合液中,然後在恆溫水槽中超聲振動3h,然後逐滴加入正矽酸四乙酯,並繼續磁力攪拌11h,磁鐵分離,得到的沉澱用無水乙醇洗滌2-4次,乾燥研磨得到Fe3O4/SiO2納米球;其中,四氧化三鐵納米球、正矽酸四乙酯的摩爾比為1:1;蒸餾水、無水乙醇、濃氨水、正矽酸四乙酯的體積比為13:60:1.4:0.35;

(3)將煤化工廢水首先經過濾器除掉廢水中較小的漂浮物,然後將廢水泵入到混凝沉澱池中,並向混凝沉澱池中加入混凝劑,攪拌6min,然後靜置沉澱2h,上清液廢水加入到ABR反應器中進行降解,ABR反應器降解後的廢水進入中沉池中,進行固液分離,分離後的廢水進入到序批式活性汙泥反應器中,然後加入步驟(2)製得的Fe3O4/SiO2納米球和乙酸鈉,機械攪拌4min,處理是在10-20℃下,每天循環2-3個周期,每個周期為10h,其中,每一個周期內的進水時間為6min,曝氣時間為6h,沉澱時間為7min,剩餘時間為閒置;

其中,混凝劑為聚丙烯醯胺、聚合硫酸鋁鐵的混合物,二者質量比為1:1,混凝劑的添加量為60mg/L;活性汙泥反應器內接種的普通活性汙泥的體積為所述活性汙泥反應器體積的45%;Fe3O4/SiO2納米球的添加量為0.5g/L;乙酸鈉的添加量為0.2g/L;

(4)將步驟(3)處理後的煤化工廢水泵入到沉澱池中,沉澱處理3h,處理產生的汙泥全部回流到ABR反應器中,然後將步驟(3)中沉池中的剩餘汙泥回流到ABR反應器中;將所述ABR反應器產生的剩餘汙泥排進汙泥池,然後將汙泥中的Fe3O4/SiO2納米球用磁鐵吸出重複利用。

實施例4

一種低汙泥產率的煤化工廢水高效處理方法,包括以下步驟:

(1)將FeCl3·6H2O和FeCl2·4H2O溶解於蒸餾水中,然後轉移至三口燒瓶中,在90-100℃、氮氣氣氛下攪拌混合2h,然後逐滴加入濃氨水調節pH至8.5-10,冷卻至室溫,磁鐵分離後,用蒸餾水洗滌3-5次,乾燥得到四氧化三鐵納米球;

(2)將步驟(1)製得的四氧化三鐵納米球分散於蒸餾水、無水乙醇、濃氨水的混合液中,然後在恆溫水槽中超聲振動4h,然後逐滴加入正矽酸四乙酯,並繼續磁力攪拌12h,磁鐵分離,得到的沉澱用無水乙醇洗滌2-4次,乾燥研磨得到Fe3O4/SiO2納米球;其中,四氧化三鐵納米球、正矽酸四乙酯的摩爾比為1:1;蒸餾水、無水乙醇、濃氨水、正矽酸四乙酯的體積比為16:60:1.6:0.4;

(3)將煤化工廢水首先經過濾器除掉廢水中較小的漂浮物,然後將廢水泵入到混凝沉澱池中,並向混凝沉澱池中加入混凝劑,攪拌7min,然後靜置沉澱3h,上清液廢水加入到ABR反應器中進行降解,ABR反應器降解後的廢水進入中沉池中,進行固液分離,分離後的廢水進入到序批式活性汙泥反應器中,然後加入步驟(2)製得的Fe3O4/SiO2納米球和乙酸鈉,機械攪拌5min,處理是在10-20℃下,每天循環2-3個周期,每個周期為12h,其中,每一個周期內的進水時間為7min,曝氣時間為8h,沉澱時間為9min,剩餘時間為閒置;

其中,混凝劑為聚丙烯醯胺、聚合硫酸鋁鐵的混合物,二者質量比為1:1,混凝劑的添加量為70mg/L;活性汙泥反應器內接種的普通活性汙泥的體積為所述活性汙泥反應器體積的50%;Fe3O4/SiO2納米球的添加量為0.7g/L;乙酸鈉的添加量為0.3g/L;

(4)將步驟(3)處理後的煤化工廢水泵入到沉澱池中,沉澱處理4h,處理產生的汙泥全部回流到ABR反應器中,然後將步驟(3)中沉池中的剩餘汙泥回流到ABR反應器中;將所述ABR反應器產生的剩餘汙泥排進汙泥池,然後將汙泥中的Fe3O4/SiO2納米球用磁鐵吸出重複利用。

實施例5

一種低汙泥產率的煤化工廢水高效處理方法,包括以下步驟:

(1)將FeCl3·6H2O和FeCl2·4H2O溶解於蒸餾水中,然後轉移至三口燒瓶中,在90-100℃、氮氣氣氛下攪拌混合2.5h,然後逐滴加入濃氨水調節pH至8.5-10,冷卻至室溫,磁鐵分離後,用蒸餾水洗滌3-5次,乾燥得到四氧化三鐵納米球;

(2)將步驟(1)製得的四氧化三鐵納米球分散於蒸餾水、無水乙醇、濃氨水的混合液中,然後在恆溫水槽中超聲振動4.5h,然後逐滴加入正矽酸四乙酯,並繼續磁力攪拌12.5h,磁鐵分離,得到的沉澱用無水乙醇洗滌2-4次,乾燥研磨得到Fe3O4/SiO2納米球;其中,四氧化三鐵納米球、正矽酸四乙酯的摩爾比為1:1;蒸餾水、無水乙醇、濃氨水、正矽酸四乙酯的體積比為18:60:1.8:0.45;

(3)將煤化工廢水首先經過濾器除掉廢水中較小的漂浮物,然後將廢水泵入到混凝沉澱池中,並向混凝沉澱池中加入混凝劑,攪拌8min,然後靜置沉澱4h,上清液廢水加入到ABR反應器中進行降解,ABR反應器降解後的廢水進入中沉池中,進行固液分離,分離後的廢水進入到序批式活性汙泥反應器中,然後加入步驟(2)製得的Fe3O4/SiO2納米球和乙酸鈉,機械攪拌6min,處理是在10-20℃下,每天循環2-3個周期,每個周期為14h,其中,每一個周期內的進水時間為8min,曝氣時間為9h,沉澱時間為11min,剩餘時間為閒置;

其中,混凝劑為聚丙烯醯胺、聚合硫酸鋁鐵的混合物,二者質量比為1:1,混凝劑的添加量為90mg/L;活性汙泥反應器內接種的普通活性汙泥的體積為所述活性汙泥反應器體積的55%;Fe3O4/SiO2納米球的添加量為0.8g/L;乙酸鈉的添加量為0.5g/L;

(4)將步驟(3)處理後的煤化工廢水泵入到沉澱池中,沉澱處理5h,處理產生的汙泥全部回流到ABR反應器中,然後將步驟(3)中沉池中的剩餘汙泥回流到ABR反應器中;將所述ABR反應器產生的剩餘汙泥排進汙泥池,然後將汙泥中的Fe3O4/SiO2納米球用磁鐵吸出重複利用。

對比例1

一種低汙泥產率的煤化工廢水高效處理方法,包括以下步驟:

(1)將煤化工廢水首先經過濾器除掉廢水中較小的漂浮物,然後將廢水泵入到混凝沉澱池中,並向混凝沉澱池中加入混凝劑,攪拌5min,然後靜置沉澱1h,上清液廢水加入到ABR反應器中進行降解,ABR反應器降解後的廢水進入中沉池中,進行固液分離,分離後的廢水進入到序批式活性汙泥反應器中,然後加入乙酸鈉,機械攪拌3min,處理是在10-20℃下,每天循環2-3個周期,每個周期為8h,其中,每一個周期內的進水時間為5min,曝氣時間為4h,沉澱時間為5min,剩餘時間為閒置;

其中,混凝劑為聚丙烯醯胺、聚合硫酸鋁鐵的混合物,二者質量比為1:1,混凝劑的添加量為50mg/L;活性汙泥反應器內接種的普通活性汙泥的體積為所述活性汙泥反應器體積的40%;乙酸鈉的添加量為0.1g/L;

(2)將步驟(1)處理後的煤化工廢水泵入到沉澱池中,沉澱處理2-6h,處理產生的汙泥全部回流到ABR反應器中,然後將步驟(1)中沉池中的剩餘汙泥回流到ABR反應器中;將所述ABR反應器產生的剩餘汙泥排進汙泥池,然後將汙泥中的Fe3O4/SiO2納米球用磁鐵吸出重複利用。

對比例2

一種低汙泥產率的煤化工廢水高效處理方法,包括以下步驟:

(1)將FeCl3·6H2O和FeCl2·4H2O溶解於蒸餾水中,然後轉移至三口燒瓶中,在90-100℃、氮氣氣氛下攪拌混合1h,然後逐滴加入濃氨水調節pH至8.5-10,冷卻至室溫,磁鐵分離後,用蒸餾水洗滌3-5次,乾燥得到四氧化三鐵納米球;

(2)將步驟(1)製得的四氧化三鐵納米球分散於蒸餾水、無水乙醇、濃氨水的混合液中,然後在恆溫水槽中超聲振動2h,然後逐滴加入正矽酸四乙酯,並繼續磁力攪拌10h,磁鐵分離,得到的沉澱用無水乙醇洗滌2-4次,乾燥研磨得到Fe3O4/SiO2納米球;其中,四氧化三鐵納米球、正矽酸四乙酯的摩爾比為1:1;蒸餾水、無水乙醇、濃氨水、正矽酸四乙酯的體積比為10:60:1:0.25;

(3)將煤化工廢水首先經過濾器除掉廢水中較小的漂浮物,然後將廢水泵入到混凝沉澱池中,並向混凝沉澱池中加入混凝劑,攪拌5min,然後靜置沉澱1h,上清液廢水加入到ABR反應器中進行降解,ABR反應器降解後的廢水進入中沉池中,進行固液分離,分離後的廢水進入到序批式活性汙泥反應器中,然後加入步驟(2)製得的Fe3O4/SiO2納米球,機械攪拌3min,處理是在10-20℃下,每天循環2-3個周期,每個周期為8h,其中,每一個周期內的進水時間為5min,曝氣時間為4h,沉澱時間為5min,剩餘時間為閒置;

其中,混凝劑為聚丙烯醯胺、聚合硫酸鋁鐵的混合物,二者質量比為1:1,混凝劑的添加量為50mg/L;活性汙泥反應器內接種的普通活性汙泥的體積為所述活性汙泥反應器體積的40%;Fe3O4/SiO2納米球的添加量為0.3g/L;

(4)將步驟(3)處理後的煤化工廢水泵入到沉澱池中,沉澱處理2-6h,處理產生的汙泥全部回流到ABR反應器中,然後將步驟(3)中沉池中的剩餘汙泥回流到ABR反應器中;將所述ABR反應器產生的剩餘汙泥排進汙泥池,然後將汙泥中的Fe3O4/SiO2納米球用磁鐵吸出重複利用。

經檢測,實施例1-5的處理方法,可以去除煤化工廢水中99%以上的汙染物,而對比例1的方法,煤化工廢水中汙染物的去除率僅為77.9%,對比例2的方法,煤化工廢水中汙染物的去除率為83.5%。

同类文章

一種新型多功能組合攝影箱的製作方法

一種新型多功能組合攝影箱的製作方法【專利摘要】本實用新型公開了一種新型多功能組合攝影箱,包括敞開式箱體和前攝影蓋,在箱體頂部設有移動式光源盒,在箱體底部設有LED脫影板,LED脫影板放置在底板上;移動式光源盒包括上蓋,上蓋內設有光源,上蓋部設有磨沙透光片,磨沙透光片將光源封閉在上蓋內;所述LED脫影

壓縮模式圖樣重疊檢測方法與裝置與流程

本發明涉及通信領域,特別涉及一種壓縮模式圖樣重疊檢測方法與裝置。背景技術:在寬帶碼分多址(WCDMA,WidebandCodeDivisionMultipleAccess)系統頻分復用(FDD,FrequencyDivisionDuplex)模式下,為了進行異頻硬切換、FDD到時分復用(TDD,Ti

個性化檯曆的製作方法

專利名稱::個性化檯曆的製作方法技術領域::本實用新型涉及一種檯曆,尤其涉及一種既顯示月曆、又能插入照片的個性化檯曆,屬於生活文化藝術用品領域。背景技術::公知的立式檯曆每頁皆由月曆和畫面兩部分構成,這兩部分都是事先印刷好,固定而不能更換的。畫面或為風景,或為模特、明星。功能單一局限性較大。特別是畫

一種實現縮放的視頻解碼方法

專利名稱:一種實現縮放的視頻解碼方法技術領域:本發明涉及視頻信號處理領域,特別是一種實現縮放的視頻解碼方法。背景技術: Mpeg標準是由運動圖像專家組(Moving Picture Expert Group,MPEG)開發的用於視頻和音頻壓縮的一系列演進的標準。按照Mpeg標準,視頻圖像壓縮編碼後包

基於加熱模壓的纖維增強PBT複合材料成型工藝的製作方法

本發明涉及一種基於加熱模壓的纖維增強pbt複合材料成型工藝。背景技術:熱塑性複合材料與傳統熱固性複合材料相比其具有較好的韌性和抗衝擊性能,此外其還具有可回收利用等優點。熱塑性塑料在液態時流動能力差,使得其與纖維結合浸潤困難。環狀對苯二甲酸丁二醇酯(cbt)是一種環狀預聚物,該材料力學性能差不適合做纖

一種pe滾塑儲槽的製作方法

專利名稱:一種pe滾塑儲槽的製作方法技術領域:一種PE滾塑儲槽一、 技術領域 本實用新型涉及一種PE滾塑儲槽,主要用於化工、染料、醫藥、農藥、冶金、稀土、機械、電子、電力、環保、紡織、釀造、釀造、食品、給水、排水等行業儲存液體使用。二、 背景技術 目前,化工液體耐腐蝕貯運設備,普遍使用傳統的玻璃鋼容

釘的製作方法

專利名稱:釘的製作方法技術領域:本實用新型涉及一種釘,尤其涉及一種可提供方便拔除的鐵(鋼)釘。背景技術:考慮到廢木材回收後再加工利用作業的方便性與安全性,根據環保規定,廢木材的回收是必須將釘於廢木材上的鐵(鋼)釘拔除。如圖1、圖2所示,目前用以釘入木材的鐵(鋼)釘10主要是在一釘體11的一端形成一尖

直流氧噴裝置的製作方法

專利名稱:直流氧噴裝置的製作方法技術領域:本實用新型涉及ー種醫療器械,具體地說是ー種直流氧噴裝置。背景技術:臨床上的放療過程極易造成患者的局部皮膚損傷和炎症,被稱為「放射性皮炎」。目前對於放射性皮炎的主要治療措施是塗抹藥膏,而放射性皮炎患者多伴有局部疼痛,對於止痛,多是通過ロ服或靜脈注射進行止痛治療

新型熱網閥門操作手輪的製作方法

專利名稱:新型熱網閥門操作手輪的製作方法技術領域:新型熱網閥門操作手輪技術領域:本實用新型涉及一種新型熱網閥門操作手輪,屬於機械領域。背景技術::閥門作為流體控制裝置應用廣泛,手輪傳動的閥門使用比例佔90%以上。國家標準中提及手輪所起作用為傳動功能,不作為閥門的運輸、起吊裝置,不承受軸向力。現有閥門

用來自動讀取管狀容器所載識別碼的裝置的製作方法

專利名稱:用來自動讀取管狀容器所載識別碼的裝置的製作方法背景技術:1-本發明所屬領域本發明涉及一種用來自動讀取管狀容器所載識別碼的裝置,其中的管狀容器被放在循環於配送鏈上的文檔匣或託架裝置中。本發明特別適用於,然而並非僅僅專用於,對引入自動分析系統的血液樣本試管之類的自動識別。本發明還涉及專為實現讀