新四季網

具有立體超結的金屬氧化半導體場效功率組件的製作方法

2023-07-20 20:14:12


本實用新型涉及一種具有立體超結的金屬氧化半導體場效功率組件,尤其涉及一種可增加所述金屬氧化半導體場效功率組件的擊穿電壓和降低所述金屬氧化半導體場效功率組件的導通電阻的金屬氧化半導體場效功率組件。



背景技術:

在現有技術中,當具有超結的金屬氧化半導體場效功率組件(power metal-oxide-semiconductor field-effect transistor device)關閉時,所述金屬氧化半導體場效功率組件是利用所述金屬氧化半導體場效功率組件內的P型井和N型磊晶層之間的PN接面所形成耗盡區來承受所述金屬氧化半導體場效功率組件漏極和源極之間的電壓。當所述耗盡區的寬度增加時,所述耗盡區可承受所述金屬氧化半導體場效功率組件漏極和源極之間的電壓也會隨所述耗盡區的寬度增加而增加。因為所述耗盡區是通過所述P型井和所述N型磊晶層之間的橫向擴散作用而形成,所以所述耗盡區的寬度將受限於所述橫向擴散作用,導致所述金屬氧化半導體場效功率組件的擊穿電壓受限於所述耗盡區的寬度。因此,如何設計使所述金屬氧化半導體場效功率組件具有高擊穿電壓成為一項重要的課題。



技術實現要素:

本實用新型的一實施例公開一種具有立體超結的金屬氧化半導體場效功率組件包含一第一金屬層、一基底層、一磊晶層、多個第一溝槽井、多個第二溝槽井、多個基體結構層、多個多晶矽層及一第二金屬層。所述基底層形成於所述第一金屬層之上。所述磊晶層形成於所述基底層之上。所述多個第一溝槽井形成於所述磊晶層之中。對應每一第一溝槽井的一基體結構層形成於所述每一第一溝槽井之上和所述磊晶層之中,且所述每一第一溝槽井和所述磊晶層之間以及所述基體結構層和所述磊晶層之間形成一耗盡區的部份。對應所述每一第一溝槽井的一第二溝槽井形成於所述每一第一溝槽井之下,且所述第二溝槽井和所述磊晶層之間形成所述耗盡區的其餘部份。每一多晶矽層形成於兩相鄰基體結構層和所述磊晶層之上,且所述每一多晶矽層被一氧化層包覆。所述第二金屬層,形成於所述多個基體結構層和多個氧化層之上。所述基底層和所述磊晶層具有一第一導電類型,所述多個第一溝槽井和所述多個第二溝槽井具有一第二導電類型,以及所述多個第二溝槽井是用於增加所述金屬氧化半導體場效功率組件的擊穿電壓(breakdown voltage)和降低所述金屬氧化半導體場效功率組件的導通電阻。

本實用新型所公開的一種具有立體超結的金屬氧化半導體場效功率組件。所述金屬氧化半導體場效功率組件是使對應每一第一溝槽井的耗盡區不僅可橫向形成於所述每一第一溝槽井和一磊晶層之間,對應所述每一第一溝槽井的基體結構層和所述磊晶層之間,以及對應所述每一第一溝槽井的第二溝槽井和所述磊晶層之間,更可縱向形成於所述第二溝槽井和所述磊晶層之間。因此,相較於現有技術,本實用新型所公開的耗盡區更大,導致所述金屬氧化半導體場效功率組件的擊穿電壓隨所述耗盡區增加而增加。另外,因為所述金屬氧化半導體場效功率組件的多個第二溝槽井的離子摻雜濃度大於所述金屬氧化半導體場效功率組件的多個第一溝槽井的離子摻雜濃度,且所述多個第二溝槽井的每一第二溝槽井的寬度小於所述多個第一溝槽井對應的第一溝槽井的寬度,所以當所述金屬氧化半導體場效功率組件開啟時,因為位於所述多個第二溝槽井間的所述磊晶層的寬度增加,所以所述金屬氧化半導體場效功率組件的導通電阻可被降低。

附圖說明

圖1是本實用新型的第一實施例所公開的一種具有立體超結的金屬氧化半導體場效功率組件的示意圖。

圖2是說明當金屬氧化半導體場效功率組件關閉時,每一第一溝槽井和磊晶層之間,對應所述每一第一溝槽井的基體結構層和磊晶層之間,以對應所述每一第一溝槽井的第二溝槽井和磊晶層之間形成耗盡區的示意圖。

圖3是說明當金屬氧化半導體場效功率組件開啟時,第一摻雜區相對於第二摻雜區的一邊形成第一通道和第二摻雜區相對於第一摻雜區的一邊形成第二通道的示意圖。

圖4是本實用新型的第二實施例所公開的一種具有立體超結的金屬氧化半導體場效功率組件的示意圖。

圖5-8是本實用新型的不同實施例說明一金屬氧化半導體場效功率組件的上視示意圖。

圖9是本實用新型的第三實施例所公開的一種具有立體超結的金屬氧化半導體場效功率組件的製造方法的流程圖。

圖10是說明根據圖9的製造方法所製造的金屬氧化半導體場效功率組件的橫切面的示意圖。

圖11是本實用新型的第四實施例所公開的一種具有立體超結的金屬氧化半導體場效功率組件的製造方法的流程圖。

圖12是說明根據圖11的製造方法所製造的金屬氧化半導體場效功率組件的橫切面的示意圖。

其中,附圖標記說明如下:

100、400 金屬氧化半導體場效功率組件

102 第一金屬層

104 基底層

106、406 磊晶層

108 第二金屬層

110、112、410、412 第一溝槽井

114、116、118 多晶矽層

120、122 第二溝槽井

124、126 基體結構層

128、130、132 氧化層

134 耗盡區

136 第一通道

138 第二通道

1242 基體

1244 摻雜井

1246 第一摻雜區

1248 第二摻雜區

202、204、206、208 箭頭

4102-4108 溝槽層

1002、1004 第二溝槽

1006、1008 第一溝槽

1202 離子束

900-918、1100-1112 步驟

具體實施方式

請參照圖1,圖1是本實用新型的第一實施例所公開的一種具有立體超結(three-dimensional super junction)的金屬氧化半導體場效功率組件100的示意圖。如圖1所示,金屬氧化半導體場效功率組件100包含一第一金屬層102、一基底層104、一磊晶層106和一第二金屬層108。另外,圖1僅顯示金屬氧化半導體場效功率組件100的多個第一溝槽井中的第一溝槽井110、112,金屬氧化半導體場效功率組件100的多個多晶矽層中的多晶矽層114、116、118,金屬氧化半導體場效功率組件100的多個第二溝槽井中的第二溝槽井120、122,以及金屬氧化半導體場效功率組件100的多個基體結構層中的基體結構層124、126,其中基底層104和磊晶層106具有一第一導電類型,所述多個第一溝槽井和所述多個第二溝槽井具有一第二導電類型,基底層104的離子摻雜濃度大於磊晶層106的離子摻雜濃度,以及所述第一導電態樣是N型和所述第二導電態樣是P型。但本實用新型並不受限於所述第一導電態樣是N型和所述第二導電態樣是P型。另外,第一金屬層102是金屬氧化半導體場效功率組件100的漏極,所述多個多晶矽層是金屬氧化半導體場效功率組件100的柵極,以及第二金屬層108是金屬氧化半導體場效功率組件100的源極。如圖1所示,基底層104形成於第一金屬層102之上,磊晶層106形成於基底層104之上,第一溝槽井110、112形成於磊晶層106之中,對應第一溝槽井110的第二溝槽井120形成於第一溝槽井110之下以及磊晶層106之中,對應第一溝槽井112的第二溝槽井122形成於第一溝槽井112之下以及磊晶層106之中,基體結構層124形成於第一溝槽井110之上和磊晶層106之中,基體結構層126形成於第一溝槽井112之上和磊晶層106之中,多晶矽層116形成於兩相鄰基體結構層(基體結構層124、126)和磊晶層106之上,以及第二金屬層108形成於所述多個基體結構層和多個氧化層之上,其中所述多個第二溝槽井中的每一第二溝槽井的離子摻雜濃度大於所述多個第一溝槽井中一對應的第一溝槽井的離子摻雜濃度(例如第二溝槽井120的離子摻雜濃度大於第一溝槽井110的離子摻雜濃度),以及所述每一第二溝槽井的寬度小於所述對應的第一溝槽井的寬度(例如第二溝槽井120的寬度小於第一溝槽井110的寬度)。另外,所述多個第一溝槽井和所述多個第二溝槽井是通過一深溝槽(deep trench)回填方式所產生,其中在所述深溝槽回填方式中,所述多個第一溝槽井和所述多個第二溝槽井可通過磊晶或化學氣相沉積(chemical vapor deposition,CVD)等方式生成。另外,如圖1所示,多晶矽層114、116、118分別被氧化層128、130、132包覆。

如圖1所示,基體結構層124包含一基體1242、一摻雜井1244、一第一摻雜區1246及一第二摻雜區1248。基體1242具有所述第二導電類型且形成於第一溝槽井110之上(其中基體1242的寬度大於第一溝槽井110的寬度),摻雜井1244具有所述第二導電類型且形成於基體1242之中,以及第一摻雜區1246及第二摻雜區1248具有所述第一導電類型且形成於摻雜井1244和基體1242之中,其中基體1242的離子摻雜濃度大於第一溝槽井110的離子摻雜濃度,以及摻雜井1244的離子摻雜濃度大於基體1242的離子摻雜濃度。另外,基底層104、磊晶層106、基體1242、摻雜井1244、第一摻雜區1246及第二摻雜區1248是通過一離子植入方式而形成。另外,摻雜井1244作為基體1242的接觸(contact)。另外,基體結構層126的結構和基體結構層124的結構,在此不再贅述。

如圖2所示,當金屬氧化半導體場效功率組件100關閉時,所述多個第一溝槽井中的每一第一溝槽井和磊晶層106之間以及對應所述每一第一溝槽井的一基體結構層和磊晶層106之間形成一耗盡區的部份,以及所述多個第二溝槽井中對應所述每一第一溝槽井的一第二溝槽井和磊晶層106之間形成所述耗盡區的其餘部份。例如當金屬氧化半導體場效功率組件100關閉時,第一溝槽井110和磊晶層106之間以及基體結構層124和磊晶層106之間形成一耗盡區134(用虛線表示)的部份,以及第二溝槽井120和磊晶層106之間形成耗盡區134的其餘部份。因此,如圖2所示,耗盡區134不僅可橫向形成於第一溝槽井110和磊晶層106之間(箭頭202),基體結構層124和磊晶層106之間(箭頭204),以及第二溝槽井120和磊晶層106之間(箭頭206),耗盡區134更可縱向形成於第二溝槽井120和磊晶層106之間(箭頭208)。因為耗盡區134更可縱向形成於第二溝槽井120和磊晶層106之間,所以相較於現有技術,耗盡區134更大,導致金屬氧化半導體場效功率組件100的擊穿電壓(breakdown voltage)隨耗盡區134增加而增加。

另外,如圖3所示,當金屬氧化半導體場效功率組件100開啟時,第一摻雜區1246相對於第二摻雜區1248的一邊形成一第一通道136和第二摻雜區1248相對於第一摻雜區1246的一邊形成一第二通道138。因為所述多個第二溝槽井的離子摻雜濃度大於所述多個第一溝槽井的離子摻雜濃度,且所述多個第二溝槽井的每一第二溝槽井的寬度小於所述多個第一溝槽井中對應的第一溝槽井的寬度(例如第二溝槽井120的寬度小於第一溝槽井110的寬度),所以當金屬氧化半導體場效功率組件100開啟時,因為位於所述多個第二溝槽井間的磊晶層106的寬度增加,所以金屬氧化半導體場效功率組件100的導通電阻可被降低。另外,金屬氧化半導體場效功率組件100開啟和關閉操作原理是本領域具有熟知技藝者所熟知的技藝,在此不再贅述。

請參照圖4,圖4是本實用新型的第二實施例所公開的一種具有立體超結的金屬氧化半導體場效功率組件400的示意圖。如圖4所示,金屬氧化半導體場效功率組件400和金屬氧化半導體場效功率組件100的差別在於金屬氧化半導體場效功率組件400的每一第一溝槽井(例如第一溝槽井410、412)和一磊晶層406是通過多層磊晶和離子植入(multi-epitaxy&implantation)方式所產生,其中第一溝槽井410中的溝槽層4102-4108的離子摻雜濃度和寬度可相同或不同。例如在本實用新型的一實施例中,溝槽層4102-4108的離子摻雜濃度是由上往下逐漸增加且溝槽層4102-4108的寬度相同(如圖4所示)。另外,在本實用新型的另一實施例中,溝槽層4102-4108的離子摻雜濃度是由上往下逐漸增加且溝槽層4102-4108的寬度是由上往下逐漸減少。另外,金屬氧化半導體場效功率組件400增加耗盡區和降低導通電阻的原理和金屬氧化半導體場效功率組件100相同,在此不再贅述。

請參照圖5-8,圖5-8是本實用新型的不同實施例說明一金屬氧化半導體場效功率組件的上視示意圖,其中圖5-8僅顯示所述金屬氧化半導體場效功率組件的多個第一溝槽井、多個第二溝槽井、多個多晶矽層和多個接觸。如圖5所示,所述多個第一溝槽井、所述多個第二溝槽井和所述多個多晶矽層為條狀(stripe)型態;如圖6所示,所述多個第一溝槽井和所述多個多晶矽層為條狀型態,以及所述多個第二溝槽井為島狀(island)型態;如圖7所示,所述多個第一溝槽井和所述多個多晶矽層為條狀型態,以及所述多個第二溝槽井為圓點狀(dot)型態;如圖8所示,所述多個第一溝槽井和所述多個多晶矽層為交錯排列(cross arrangement)型態,以及所述多個第二溝槽井為矩形型態。另外,本實用新型並不受限於圖5-8所示的所述多個第二溝槽井的型態,也就是說只要所述多個第二溝槽井隨著所述多個第一溝槽井改變,且所述多個第二溝槽井的尺寸小於隨著所述多個第一溝槽井的尺寸即落入本實用新型的範圍。

請參照圖2、9、10,圖9是本實用新型的第三實施例所公開的一種具有立體超結的金屬氧化半導體場效功率組件的製造方法的流程圖。圖9的製造方法是利用圖10說明,詳細步驟如下:

步驟900:開始;

步驟902:形成基底層104於第一金屬層102之上;

步驟904:形成磊晶層106於基底層104之上;

步驟906:形成多個第二溝槽於磊晶層106之中;

步驟908:填充具有所述第二導電類型的第二磊晶至所述多個第二溝槽形成多個第二溝槽井;

步驟910:再次沉積磊晶層106;

步驟912:形成多個第一溝槽於磊晶層106之中;

步驟914:填充具有所述第二導電類型的第一磊晶至所述多個第一溝槽形成多個第一溝槽井;

步驟916:完成金屬氧化半導體場效功率組件100;

步驟918:結束。

在步驟902和步驟904中,如圖10(a)所示,基底層104形成於第一金屬層102之上,以及磊晶層106形成於基底層104之上。在步驟906中,在磊晶層106形成於基底層104之上後,在磊晶層106之中蝕刻出所述多個第二溝槽(如圖10(b)所示的第二溝槽1002、1004)。在步驟908中,通過所述深溝槽回填方式填充所述第二磊晶至所述多個第二溝槽形成所述多個第二溝槽井(如圖10(c)所示的第二溝槽井120、122)。在步驟910中,如圖10(d)所示,再次沉積磊晶層106。在步驟912中,在磊晶層106之中蝕刻出所述多個第一溝槽(如圖10(e)所示的第一溝槽1006、1008)。在步驟914中,通過所述深溝槽回填方式填充所述第一磊晶至所述多個第一溝槽形成所述多個第一溝槽井(如圖10(f)所示的第一溝槽井110、112)。在步驟916中,如圖10(g)所示,完成金屬氧化半導體場效功率組件100,也就是說形成所述多個基體結構層於所述多個第一溝槽井之上和磊晶層106之中,以及形成多個多晶矽層和第二金屬層108於磊晶層106和所述多個基體結構層之上,其中形成所述多個基體結構層於所述多個第一溝槽井之上和磊晶層106之中,以及形成多個多晶矽層和第二金屬層108於磊晶層106和所述多個基體結構層之上是本領域具有熟知技藝者所熟知的技藝,在此不再贅述。另外,基底層104的離子摻雜濃度大於磊晶層106的離子摻雜濃度,以及所述第一導電態樣是N型和所述第二導電態樣是P型。但本實用新型並不受限於所述第一導電態樣是N型和所述第二導電態樣是P型。另外,第一金屬層102是金屬氧化半導體場效功率組件100的漏極,所述多個多晶矽層是金屬氧化半導體場效功率組件100的柵極,以及第二金屬層108是金屬氧化半導體場效功率組件100的源極。另外,所述多個第二溝槽井中的每一第二溝槽井的離子摻雜濃度大於所述多個第一溝槽井中一對應的第一溝槽井的離子摻雜濃度(例如第二溝槽井120的離子摻雜濃度大於第一溝槽井110的離子摻雜濃度),以及所述每一第二溝槽井的寬度小於所述對應的第一溝槽井的寬度(例如第二溝槽井120的寬度小於第一溝槽井110的寬度)。

另外,如圖2所示,當金屬氧化半導體場效功率組件100關閉時,第一溝槽井110和磊晶層106之間以及基體結構層124和磊晶層106之間形成耗盡區134(用虛線表示)的部份,以及第二溝槽井120和磊晶層106之間形成耗盡區134的其餘部份。因此,如圖2所示,耗盡區134不僅可橫向形成於第一溝槽井110和磊晶層106之間(箭頭202),基體結構層124和磊晶層106之間(箭頭204),以及第二溝槽井120和磊晶層106之間(箭頭206),耗盡區134更可縱向形成於第二溝槽井120和磊晶層106之間(箭頭208)。因為耗盡區134更可縱向形成於第二溝槽井120和磊晶層106之間,所以相較於現有技術,耗盡區134更大,導致金屬氧化半導體場效功率組件100的擊穿電壓隨耗盡區134增加而增加。另外,因為所述多個第二溝槽井的離子摻雜濃度大於所述多個第一溝槽井的離子摻雜濃度,且所述多個第二溝槽井的每一第二溝槽井的寬度小於所述多個第一溝槽井中對應的第一溝槽井的寬度(例如第二溝槽井120的寬度小於第一溝槽井110的寬度),所以當金屬氧化半導體場效功率組件100開啟時,因為位於所述多個第二溝槽井間的磊晶層106的寬度增加,所以金屬氧化半導體場效功率組件100的導通電阻可被降低。

請參照圖11、12,圖11是本實用新型的第四實施例所公開的一種具有立體超結的金屬氧化半導體場效功率組件的製造方法的流程圖。圖11的製造方法是利用圖12說明,詳細步驟如下:

步驟1100:開始;

步驟1102:形成基底層104於第一金屬層102之上;

步驟1104:形成磊晶層106於基底層104之上;

步驟1106:利用一離子植入方式形成多個第二溝槽井於磊晶層106之中;

步驟1108:利用一多層磊晶和離子植入方式形成磊晶層106的其餘部分及多個第一溝槽井;

步驟1110:完成金屬氧化半導體場效功率組件400;

步驟1112:結束。

圖11的實施例和圖9的實施例的差別在於在步驟1106中,如圖12(b)所示,利用所述離子植入方式將離子束1202射入磊晶層106之中形成所述多個第二溝槽井;在步驟1108中,如圖12(c)、(d)、(e)所示,利用所述多層磊晶和離子植入方式形成磊晶層106的其餘部分及所述多個第一溝槽井。如圖12(f)所示,第一溝槽井410中的溝槽層4102-4108的離子摻雜濃度和寬度可相同或不同。例如在本實用新型的一實施例中,溝槽層4102-4108的離子摻雜濃度是由上往下逐漸增加且溝槽層4102-4108的寬度相同。另外,在本實用新型的另一實施例中,溝槽層4102-4108的離子摻雜濃度是由上往下逐漸增加且溝槽層4102-4108的寬度是由上往下逐漸減少。

綜上所述,本實用新型所公開的具有立體超結的金屬氧化半導體場效功率組件及其製造方法是使對應每一第一溝槽井的耗盡區不僅可橫向形成於所述每一第一溝槽井和所述磊晶層之間,對應所述每一第一溝槽井的基體結構層和所述磊晶層之間,以及對應所述每一第一溝槽井的第二溝槽井和所述磊晶層之間,更可縱向形成於所述第二溝槽井和所述磊晶層之間。因此,相較於現有技術,本實用新型所公開的耗盡區更大,導致所述金屬氧化半導體場效功率組件的擊穿電壓隨所述耗盡區增加而增加。另外,因為所述多個第二溝槽井的離子摻雜濃度大於所述多個第一溝槽井的離子摻雜濃度,且所述多個第二溝槽井的每一第二溝槽井的寬度小於所述多個第一溝槽井對應的第一溝槽井的寬度,所以當所述金屬氧化半導體場效功率組件開啟時,因為位於所述多個第二溝槽井間的所述磊晶層的寬度增加,所以所述金屬氧化半導體場效功率組件的導通電阻可被降低。

以上所述僅為本實用新型的優選實施例而已,並不用於限制本實用新型,對於本領域的技術人員來說,本實用新型可以有各種更改和變化。凡在本實用新型的精神和原則之內,所作的任何修改、等同替換、改進等,均應包含在本實用新型的保護範圍之內。

同类文章

一種新型多功能組合攝影箱的製作方法

一種新型多功能組合攝影箱的製作方法【專利摘要】本實用新型公開了一種新型多功能組合攝影箱,包括敞開式箱體和前攝影蓋,在箱體頂部設有移動式光源盒,在箱體底部設有LED脫影板,LED脫影板放置在底板上;移動式光源盒包括上蓋,上蓋內設有光源,上蓋部設有磨沙透光片,磨沙透光片將光源封閉在上蓋內;所述LED脫影

壓縮模式圖樣重疊檢測方法與裝置與流程

本發明涉及通信領域,特別涉及一種壓縮模式圖樣重疊檢測方法與裝置。背景技術:在寬帶碼分多址(WCDMA,WidebandCodeDivisionMultipleAccess)系統頻分復用(FDD,FrequencyDivisionDuplex)模式下,為了進行異頻硬切換、FDD到時分復用(TDD,Ti

個性化檯曆的製作方法

專利名稱::個性化檯曆的製作方法技術領域::本實用新型涉及一種檯曆,尤其涉及一種既顯示月曆、又能插入照片的個性化檯曆,屬於生活文化藝術用品領域。背景技術::公知的立式檯曆每頁皆由月曆和畫面兩部分構成,這兩部分都是事先印刷好,固定而不能更換的。畫面或為風景,或為模特、明星。功能單一局限性較大。特別是畫

一種實現縮放的視頻解碼方法

專利名稱:一種實現縮放的視頻解碼方法技術領域:本發明涉及視頻信號處理領域,特別是一種實現縮放的視頻解碼方法。背景技術: Mpeg標準是由運動圖像專家組(Moving Picture Expert Group,MPEG)開發的用於視頻和音頻壓縮的一系列演進的標準。按照Mpeg標準,視頻圖像壓縮編碼後包

基於加熱模壓的纖維增強PBT複合材料成型工藝的製作方法

本發明涉及一種基於加熱模壓的纖維增強pbt複合材料成型工藝。背景技術:熱塑性複合材料與傳統熱固性複合材料相比其具有較好的韌性和抗衝擊性能,此外其還具有可回收利用等優點。熱塑性塑料在液態時流動能力差,使得其與纖維結合浸潤困難。環狀對苯二甲酸丁二醇酯(cbt)是一種環狀預聚物,該材料力學性能差不適合做纖

一種pe滾塑儲槽的製作方法

專利名稱:一種pe滾塑儲槽的製作方法技術領域:一種PE滾塑儲槽一、 技術領域 本實用新型涉及一種PE滾塑儲槽,主要用於化工、染料、醫藥、農藥、冶金、稀土、機械、電子、電力、環保、紡織、釀造、釀造、食品、給水、排水等行業儲存液體使用。二、 背景技術 目前,化工液體耐腐蝕貯運設備,普遍使用傳統的玻璃鋼容

釘的製作方法

專利名稱:釘的製作方法技術領域:本實用新型涉及一種釘,尤其涉及一種可提供方便拔除的鐵(鋼)釘。背景技術:考慮到廢木材回收後再加工利用作業的方便性與安全性,根據環保規定,廢木材的回收是必須將釘於廢木材上的鐵(鋼)釘拔除。如圖1、圖2所示,目前用以釘入木材的鐵(鋼)釘10主要是在一釘體11的一端形成一尖

直流氧噴裝置的製作方法

專利名稱:直流氧噴裝置的製作方法技術領域:本實用新型涉及ー種醫療器械,具體地說是ー種直流氧噴裝置。背景技術:臨床上的放療過程極易造成患者的局部皮膚損傷和炎症,被稱為「放射性皮炎」。目前對於放射性皮炎的主要治療措施是塗抹藥膏,而放射性皮炎患者多伴有局部疼痛,對於止痛,多是通過ロ服或靜脈注射進行止痛治療

新型熱網閥門操作手輪的製作方法

專利名稱:新型熱網閥門操作手輪的製作方法技術領域:新型熱網閥門操作手輪技術領域:本實用新型涉及一種新型熱網閥門操作手輪,屬於機械領域。背景技術::閥門作為流體控制裝置應用廣泛,手輪傳動的閥門使用比例佔90%以上。國家標準中提及手輪所起作用為傳動功能,不作為閥門的運輸、起吊裝置,不承受軸向力。現有閥門

用來自動讀取管狀容器所載識別碼的裝置的製作方法

專利名稱:用來自動讀取管狀容器所載識別碼的裝置的製作方法背景技術:1-本發明所屬領域本發明涉及一種用來自動讀取管狀容器所載識別碼的裝置,其中的管狀容器被放在循環於配送鏈上的文檔匣或託架裝置中。本發明特別適用於,然而並非僅僅專用於,對引入自動分析系統的血液樣本試管之類的自動識別。本發明還涉及專為實現讀