新四季網

組合顯示屏拼接結構和其圖像失真的波形校正裝置及方法

2023-06-27 02:42:06

專利名稱:組合顯示屏拼接結構和其圖像失真的波形校正裝置及方法
技術領域:
本發明涉及一種顯示屏的拼接結構,尤其是涉及一種組合顯示屏的拼接結構;本發明還涉及波形校正裝置,尤其是涉及一種組合顯示屏圖像失真的波形校正裝置;本發明還涉及一種波形校正的方法,尤其是涉及一種對組合顯示屏圖像失真的波形校正方法。
但是,由於組合屏技術及拼接技術還存在許多不完善的地方,因此本項技術也就還存在種種需要改進的問題。其中比較突出的一點是組合顯示屏的各單元屏之間還存在著明顯的拼接縫隙,這樣就嚴重影響了組合顯示屏的整體視覺效果,也限制了組合顯示屏的進一步廣泛應用。
目前解決上述的缺點的裝置有二,一是將凸透鏡屏、菲涅爾透鏡屏組成的投影屏和投影屏固定框相連接,並使投射光能夠達到屏幕邊緣,從而消除各單元屏之間的縫隙,然後用具有一定強度的投影屏固定卡進行固定,但是,由於投影屏固定卡需要採用非透明的金屬材料,因此阻擋了投射到屏幕邊緣部分的投影光,從而使得組合屏各單元屏邊緣部分仍然有可見拼接縫。
二是一種現有的無縫組合屏拼接專利(專利號96108558.4),其裝置是將凸透鏡屏、菲涅爾透鏡屏組成的投影屏和投影屏固定框進行連接,並使投射光能夠達到屏幕邊緣,從而消除各單元屏之間的縫隙。其連接固定是在投影屏的後面增加一塊較厚的透明介質屏來保證連接強度。但是,凸透鏡屏、菲涅爾透鏡屏和較厚透明介質共同組成的投影屏以及投影屏固定框需要進行特殊加工,同時透明介質必須有足夠的厚度,這樣就造成了成本較高的問題,而且,由於透明介質的較大厚度使得重量較大,又反過來使連接強度降低。
還有一點,無論如何進行無縫拼接,但每個單元屏還是可能有圖像失真,因此對組合屏也必然有影響,而目前尚沒有對組合屏圖像失真進行波形校正的裝置或者方法。
本發明的目的是這樣實現的一種組合顯示屏的拼接結構,包括一凸透鏡屏;一菲涅爾透鏡屏,與所述凸透鏡屏相粘結;一投影屏固定框,用於固定所述相互連粘結的凸透鏡屏與菲涅爾透鏡屏所組成的投影屏,並且,上述的一種組合顯示屏的拼接結構還包括,一角形的透明連接塊,其兩個邊框分別與所述的投影屏和所述的投影屏固定框相適配。
同時,上述的由凸透鏡屏、菲涅爾透鏡屏所組成的投影屏與所述的透明連接塊其中一個邊框的連接為透明粘接。
上述的投影屏固定框與所述的透明連接塊另一個邊框之間的連接可以為透明粘接。
上述的一種組合顯示屏的拼接結構還可以包括一機械連接器,設置在投影光的入射範圍之外,用於固定所述的透明連接塊與所述的投影屏固定框。
上述的機械連接器為螺栓,穿過所述的透明連接塊與所述的投影屏固定框上設置的螺孔相適配。
上述的透明連接塊的彎折角應在投影光的入射範圍之外。
上述的透明連接塊從彎折角到與所述的投影屏粘接的底端的入射面設置成角形。
上述的透明連接塊的入射面成直角。
上述的透明連接塊從彎折角到與所述的投影屏粘接的底端設置成斜面。
一種組合顯示屏圖像失真的波形校正裝置,用於對組合顯示屏的每個單元屏所產生的附加失真進行校正,上述的一種組合顯示屏圖像失真的波形校正裝置包括,一微處理器部分,用於輸出數字校正信號;一檢碼器部分,與所述的微處理器部分連接,用於將所述的微處理器部分輸出的數字校正信號轉換為模擬信號;一矩形波形成電路部分,與所述的檢碼器部分連接,用於根據場同步信號或者行同步信號形成矩形波;一積分電路部分,與所述的矩形波形成電路部分和所述的檢碼器部分連接,用於根據所述的檢碼器部分輸出的模擬信號和矩形波形成電路部分輸出的矩形波形成校正波形;一校正電壓放大電路部分,與所述的積分電路部分和所述的檢碼器部分連接,用於將積分電路部分輸出的校正波形放大輸出校正電壓。
並且,上述的檢碼器部分與所述的矩形波形成電路部分之間設置兩路控制電壓輸出,用於控制所述的矩形波形成電路部分輸出的矩形波的脈衝寬度和相位。
上述的檢碼器部分與所述的積分電路部分之間設置一路控制電壓輸出,用於控制所述的積分電路部分的積分常數,並進而改變所述的積分電路部分輸出的校正波的變化沿的寬度。
上述的檢碼器部分與所述的校正電壓放大電路部分之間設置一路控制電壓輸出,用於控制所述的校正電壓放大電路部分的放大倍數。
上述的檢碼器部分與所述的微處理器部分之間設置一數字總線,用於將所述的微處理器部分輸出的數字控制數據傳遞到所述的檢碼器部分。
上述的積分電路部分輸出的校正電壓設置連接到圖像掃描器,用於對圖像失真進行校正。
上述的積分電路部分輸出的校正電壓設置連接到掃描速度調製線圈,用於對圖像失真進行校正。
一種對組合顯示屏圖像失真進行波形校正的方法,包括,a)根據組合顯示屏每個單元屏所產生的附加失真預先設定數字校正信號,並存儲於一微處理器中,b)所述的微處理器輸出數字校正信號給一檢碼器,所述的檢碼器是利用數字總線與所述的微處理器連接,c)利用一矩形波形成電路根據場同步或者行同步信號形成矩形波,其中所述的矩形波形成電路與所述的檢碼器連接,並且矩形波的脈衝寬度和相位由所述的檢碼器控制,d)利用一積分電路根據所述的矩形波形成電路輸出的矩形波形成校正波形,其中所述的積分電路與所述的檢碼器連接,並且積分電路的積分常數由所述的檢碼器控制,e)利用一校正電壓放大電路根據所述的積分電路輸出的校正波形形成校正電壓,其中所述的校正電壓放大電路與所述的檢碼器連接,並且所述的校正電壓放大電路的放大倍數由所述的檢碼器控制。
採用了上述的技術方案,就可以通過無縫拼接的拼接結構消除組合顯示屏各單元屏之間的縫隙,利用對圖像失真進行波形校正的裝置和方法,可以徹底消除組合顯示屏的圖像失真。這樣在整體視覺上達到一種無縫的和無失真的效果。同時,由於上述的技術方案採用的器件其價值並不高,所以其所花費的成本也較低。
下面結合附圖詳細說明本發明的較佳實施例,通過對本發明較佳實施例的具體描述,可以更清楚的看出本發明的優點所在。
圖9A是圖8的局部放大示意圖;圖9B是圖8的另一局部放大示意圖;

圖10A是實施例二組合顯示屏單元中對應於垂直方向的場同步信號波形示意圖;圖10B是實施例二對每個組合顯示屏單元垂直方向所產生的附加失真的電路校正波形示意圖;圖11A是圖10的局部放大示意圖;圖11B是圖10的另一局部放大示意圖;圖12A是實施例二組合顯示屏單元中對應於水平方向的行同步信號波形示意圖;圖12B是實施例二對每個組合顯示屏單元水平方向所產生附加失真的電路校正波形示意圖;圖13A是圖12的局部放大示意圖;圖13B是圖12的另一局部放大示意圖;圖14是本發明的波形校正裝置的電路的連接示意框圖;圖15是本發明的波形校正方法的步驟框圖。
如圖2,凸透鏡屏10與菲涅爾透鏡屏12組成投影屏,將投影屏與投影屏固定框14進行有效的連接,並使投射光18能夠射到屏幕的邊緣;同時,在投影屏的後面設置一塊較厚的透明介質20,並且將凸透鏡屏10、菲涅爾透鏡屏12和透明介質20共同組成的部分與投影屏固定框14的連接面做成斜面,以保證兩者之間的連接面積足夠大,使獲得足夠大的連接強度,這樣可以實現無縫拼接。但是,凸透鏡屏10、菲涅爾透鏡屏12和透明介質20組成的部分與投影屏固定框14都需要進行特殊的加工,同時透明介質20的厚度必須足夠大也會造成成本較高,而且透明介質20的厚度較大又使連接強度降低。
如圖3,實施例一的拼接結構將凸透鏡屏10、菲涅爾透鏡屏12組成的投影屏與投影屏固定框14進行有效的連接,並使投射光能夠射到屏幕邊緣;同時,在投影屏和投影屏固定框14之間引入一加工成角形的透明連接塊22,用於保證兩者的連接面積足夠大,並且使投射到邊緣的投射光18的入射面不超過連接塊22與投影屏平行的表面,這樣可以保證通過該入射面入射的投影光18不發生歧變,避免屏幕邊緣處的圖像失真。
凸透鏡屏10、菲涅爾透鏡屏12之間的連接採用透明粘結,而透明固定塊22與投影屏固定框14粘結的連接可以用機械連接器24機械連接,也可以採用粘結,不過機械連接必須保證機械連接器24處於投射光18的入射範圍之外。
如圖4,當投射光18入射到透明連接塊22的端面28以後,由於折射就會在一定的區域26發生偏移而產生歧變,但是該區域26的寬度小於屏幕所顯示的圖像的像素間距,故不會在屏幕上產生視覺可見的失真。圖3和圖4示意的拼接結構適用於一般解析度的組合顯示屏裝置。
如圖6A,分別包括一場正程顯示的起始時刻32和一場正程顯示的結束時刻34。
如圖6B,對應於圖6A的場正程顯示的起始時刻32有一起始時刻的電路校正波形36,對應於圖6A的場正程顯示的結束時刻34有一結束時刻的電路校正波形38。
如圖7A,圖中示出了對應於圖6B中場正程顯示的起始時刻的校正電壓變化的起始時刻40和結束時刻42,上述的兩個時刻的時間間隔44,場正程顯示的起始時刻的校正電壓變化的起始時刻40與場正程顯示的起始時刻32的時間間隔46,校正電壓波形的幅度48。
如圖7B,圖中示出了對應於圖6B中場正程顯示的結束時刻的校正電壓變化的起始時刻50和結束時刻52,上述的兩個時刻的時間間隔54,場正程顯示的結束時刻的校正電壓變化的結束時刻52與場正程顯示的結束時刻34的時間間隔56。
如圖8A,圖中是實施例一中組合顯示屏每個單元屏在水平方向的場同步信號波形,分別包括一場正程顯示的起始時刻58和一場正程顯示的結束時刻60。
如圖8B,圖中是對組合顯示屏每個單元屏在水平方向所產生的附加失真的電路校正波形,對應於圖8A的場正程顯示的起始時刻有一電路校正波形62,對應於上方的場正程顯示的結束時刻有一電路校正波形64。
如圖9A,圖中示出了對應於圖8B中場正程顯示的起始時刻的校正電壓變化的起始時刻66和結束時刻68,上述的兩個時刻的時間間隔70,場正程顯示的起始時刻58與場正程顯示的起始時刻的校正電壓變化的起始時刻66的時間間隔72,校正電壓波形的幅度74。
如圖9B,圖中示出了對應於圖8B中場正程顯示的結束時刻的校正電壓變化的起始時刻76和結束時刻78,上述的兩個時刻的時間間隔80,場正程顯示的結束時刻的校正電壓變化的結束時刻與場正程顯示的結束時刻的時間間隔82。
如圖5,是本發明的實施例二的拼接結構,其實現無縫拼接的方法是引入一加工成角形的透明連接塊30,首先將凸透鏡屏10、菲涅爾透鏡屏12組成的投影屏與投影屏固定框14進行有效的連接,並在二者之間接入上述的透明連接塊30。凸透鏡屏10、菲涅爾透鏡屏12之間的連接和上述二者組成的投影屏與透明連接塊30之間的連接採用透明粘結的方法,而透明連接塊與投影屏固定框14之間的連接可以由機械連接器24進行機械連接,也可以採用粘結的方法,但是採用機械連接的時候必須保證機械連接器24處於投射光18的入射範圍之外。將投射到屏幕邊緣的投射光18在透明連接塊30上的入射面設置為斜面,使投射光入射到透明連接塊30後所產生的光偏移分散到較寬的區域,從而使光偏移所產生的歧變減到足夠小,就不會在屏幕所顯示的圖像上產生明顯可見的失真。圖5示意的拼接結構適用於較高解析度的組合顯示屏裝置。
如圖10A,圖中是實施例二中組合顯示屏每個單元屏在垂直方向的場同步信號波形,分別包括一場正程顯示的起始時刻32和一場正程顯示的結束時刻34。
如圖10B,圖中是對組合顯示屏每個單元屏在垂直方向所產生的附加失真的電路校正波形,對應於上方的場正程顯示的起始時刻有一起始時刻的電路校正波形84,對應於上方的場正程顯示的結束時刻有一結束時刻的電路校正波形86。
如圖11A,圖中示出了對應於圖10B中場正程顯示的起始時刻的校正電壓變化的起始時刻88,場正程顯示的起始時刻32與校正電壓變化的起始時刻88的時間間隔90,校正電壓波形的幅度92。
如圖11B,圖中示出了對應於圖10B中場正程顯示的校正電壓變化的結束時刻的校正電壓變化的起始時刻94,場正程顯示的結束時刻34與校正電壓變化的起始時刻94的時間間隔96。
如圖12A,圖中示出了實施例二中組合顯示屏每個單元屏在水平方向的場同步信號波形,分別包括一場正程顯示的起始時刻32和一場正程顯示的結束時刻34。
如圖12B,圖中示出了對組合顯示屏每個單元屏在水平方向所產生的附加失真的電路校正波形,對應於圖12A的場正程顯示的起始時刻32有一起始時刻的電路校正波形98,對應於圖12A的場正程顯示的結束時刻34有一結束時刻的電路校正波形100。
如圖13A,圖中示出了對應於圖12B中場正程顯示的起始時刻的校正電壓變化的起始時刻102,場正程顯示的起始時刻58與校正電壓變化的起始時刻102的時間間隔104,校正電壓波形的幅度106。
如圖13B,圖中示出了對應於圖12B中場正程顯示的結束時刻的校正電壓變化的起始時刻108,場正程顯示的結束時刻60與校正電壓變化的起始時刻108的時間間隔110。
如圖14,是實施例一和實施例二共同採用的波形校正電路的連接圖。本發明採用的波形校正電路包括一微處理器部分112;一檢碼器部分114,二者用數字總線連接;還包括一矩形波形成電路部分116,用於在場同步信號或者行同步信號的觸發下,產生校正用的矩形脈衝波,其通過控制線路與檢碼器部分114連接;還包括一積分電路部分118,用於將矩形波形成電路部分116輸出的矩形脈衝波經積分後形成校正電壓波形,其通過控制線路與檢碼器部分114連接,並在前端連接矩形波形成電路部分116;還包括一校正電壓放大電路部分120,用於將積分電路部分118輸出的校正電壓波形放大形成校正電壓,用於失真校正,其通過控制線路與檢碼器部分114連接,並在前端連接積分電路部分118。
檢碼器部分114輸出的控制電壓1和控制電壓2可以根據需要改變矩形脈衝波的脈衝寬度和相位,檢碼器部分114輸出的控制電壓3可以根據需要改變積分電路部分118的積分常數,並進而改變校正波形的變化沿部分的寬度,檢碼器部分114輸出的控制電壓4可以根據需要改變校正電壓放大電路部分120的放大倍數,從而控制校正量。
如圖14的波形校正電路最終產生的校正電壓,可以直接加到圖像掃描電路對所產生的圖像失真進行校正,也可以加到掃描速度調製線圈對所產生的圖像失真進行校正。
如圖15,從圖中並結合圖14可以看出,該方法通過微處理器輸出預先設定的數字校正信號,然後由檢碼器轉換為模擬信號,並由檢碼器對矩形波形成電路、積分電路和校正電壓放大電路實施控制,矩形波形成電路根據場同步或者行同步信號形成矩形波,積分電路根據矩形波形成校正波形,校正電壓放大電路根據校正波形形成校正電壓並輸出。
需要指出的是,在不脫離本發明實質的基礎上,本領域的普通技術人員可以作出各種適當的變形或者替換,比如對於基於液晶或者數字微鏡技術等數字矩陣顯示方式的組合顯示屏,可以將圖14等效替換為數字電路,以數位技術的方式來實現,並將所產生的數字校正信號用於對顯示像素地址的修正,但是,所有這些變形或者替換,都應當屬於本發明的保護範圍。
權利要求
1.一種組合顯示屏的拼接結構,包括一凸透鏡屏;一菲涅爾透鏡屏,與所述凸透鏡屏相粘結;一投影屏固定框,用於固定所述相互連粘結的凸透鏡屏與菲涅爾透鏡屏所組成的投影屏,其特徵是所述的一種組合顯示屏的拼接結構還包括,一角形的透明連接塊,其兩個邊框分別與所述的投影屏和所述的投影屏固定框相適配。
2.根據權利要求1所述的一種組合顯示屏的拼接結構,其特徵是所述的由凸透鏡屏、菲涅爾透鏡屏所組成的投影屏與所述的透明連接塊其中一個邊框的連接為透明粘接。
3.根據權利要求1所述的一種組合顯示屏的拼接結構,其特徵是所述的投影屏固定框與所述的透明連接塊另一個邊框之間的連接可以為透明粘接。
4.根據權利要求3所述的一種組合顯示屏的拼接結構,其特徵是所述的一種組合顯示屏的拼接結構還可以包括一機械連接器,設置在投影光的入射範圍之外,用於固定所述的透明連接塊與所述的投影屏固定框。
5.根據權利要求4所述的一種組合顯示屏的拼接結構,其特徵是所述的機械連接器為螺栓,穿過所述的透明連接塊與所述的投影屏固定框上設置的螺孔相適配。
6.根據權利要求1所述的一種組合顯示屏的拼接結構,其特徵是所述的透明連接塊的彎折角應在投影光的入射範圍之外。
7.根據權利要求6所述的一種組合顯示屏的拼接結構,其特徵是所述的透明連接塊從彎折角到與所述的投影屏粘接的底端的入射面設置成角形。
8.根據權利要求7所述的一種組合顯示屏的拼接結構,其特徵是所述的透明連接塊的入射面成直角。
9.根據權利要求6所述的一種組合顯示屏的拼接結構,其特徵是所述的透明連接塊從彎折角到與所述的投影屏粘接的底端設置成斜面。
10.一種組合顯示屏圖像失真的波形校正裝置,用於對組合顯示屏的每個單元屏所產生的附加失真進行校正,其特徵是所述的一種組合顯示屏圖像失真的波形校正裝置包括,一微處理器部分,用於輸出數字校正信號;一檢碼器部分,與所述的微處理器部分連接,用於將所述的微處理器部分輸出的數字校正信號轉換為模擬信號;一矩形波形成電路部分,與所述的檢碼器部分連接,用於根據場同步信號或者行同步信號形成矩形波;一積分電路部分,與所述的矩形波形成電路部分和所述的檢碼器部分連接,用於根據所述的檢碼器部分輸出的模擬信號和矩形波形成電路部分輸出的矩形波形成校正波形;一校正電壓放大電路部分,與所述的積分電路部分和所述的檢碼器部分連接,用於將積分電路部分輸出的校正波形放大輸出校正電壓。
11.根據權利要求10所述的一種組合顯示屏圖像失真的波形校正裝置,其特徵是所述的檢碼器部分與所述的矩形波形成電路部分之間設置兩路控制電壓輸出,用於控制所述的矩形波形成電路部分輸出的矩形波的脈衝寬度和相位。
12.根據權利要求10所述的一種組合顯示屏圖像失真的波形校正裝置,其特徵是所述的檢碼器部分與所述的積分電路部分之間設置一路控制電壓輸出,用於控制所述的積分電路部分的積分常數,並進而改變所述的積分電路部分輸出的校正波的變化沿的寬度。
13.根據權利要求10所述的一種組合顯示屏圖像失真的波形校正裝置,其特徵是所述的檢碼器部分與所述的校正電壓放大電路部分之間設置一路控制電壓輸出,用於控制所述的校正電壓放大電路部分的放大倍數。
14.根據權利要求10所述的一種組合顯示屏圖像失真的波形校正電路,其特徵是所述的檢碼器部分與所述的微處理器部分之間設置一數字總線,用於將所述的微處理器部分輸出的數字控制數據傳遞到所述的檢碼器部分。
15.根據權利要求10所述的一種組合顯示屏圖像失真的波形校正裝置,其特徵是所述的積分電路部分輸出的校正電壓設置連接到圖像掃描器,用於對圖像失真進行校正。
16.根據權利要求10所述的一種組合顯示屏圖像失真的波形校正裝置,其特徵是所述的積分電路部分輸出的校正電壓設置連接到掃描速度調製線圈,用於對圖像失真進行校正。
17.一種對組合顯示屏圖像失真進行波形校正的方法,其特徵是所述的方法包括步驟,a)根據組合顯示屏每個單元屏所產生的附加失真預先設定數字校正信號,並存儲於一微處理器中,b)所述的微處理器輸出數字校正信號給一檢碼器,所述的檢碼器是利用數字總線與所述的微處理器連接,c)利用一矩形波形成電路根據場同步或者行同步信號形成矩形波,其中所述的矩形波形成電路與所述的檢碼器連接,並且矩形波的脈衝寬度和相位由所述的檢碼器控制,d)利用一積分電路根據所述的矩形波形成電路輸出的矩形波形成校正波形,其中所述的積分電路與所述的檢碼器連接,並且積分電路的積分常數由所述的檢碼器控制,e)利用一校正電壓放大電路根據所述的積分電路輸出的校正波形形成校正電壓,其中所述的校正電壓放大電路與所述的檢碼器連接,並且所述的校正電壓放大電路的放大倍數由所述的檢碼器控制。
全文摘要
本發明公開了一種組合顯示屏的拼接結構和組合顯示屏圖像失真的波形校正裝置及方法,首先通過拼接結構實現無縫拼接的組合顯示屏,然後利用一波形校正電路,檢碼器根據微處理器的數字控制信號轉換為控制電壓,控制矩形波形成電路形成校正用矩形波,再用積分電路形成校正電壓波形,經校正電壓放大電路放大後形成校正電壓,對組合顯示屏的各單元屏的圖像失真進行失真校正,達到一種無失真的組合顯示屏無縫拼接。
文檔編號H04N5/74GK1396768SQ0112047
公開日2003年2月12日 申請日期2001年7月17日 優先權日2001年7月17日
發明者曹嘉燦 申請人:康佳集團股份有限公司

同类文章

一種新型多功能組合攝影箱的製作方法

一種新型多功能組合攝影箱的製作方法【專利摘要】本實用新型公開了一種新型多功能組合攝影箱,包括敞開式箱體和前攝影蓋,在箱體頂部設有移動式光源盒,在箱體底部設有LED脫影板,LED脫影板放置在底板上;移動式光源盒包括上蓋,上蓋內設有光源,上蓋部設有磨沙透光片,磨沙透光片將光源封閉在上蓋內;所述LED脫影

壓縮模式圖樣重疊檢測方法與裝置與流程

本發明涉及通信領域,特別涉及一種壓縮模式圖樣重疊檢測方法與裝置。背景技術:在寬帶碼分多址(WCDMA,WidebandCodeDivisionMultipleAccess)系統頻分復用(FDD,FrequencyDivisionDuplex)模式下,為了進行異頻硬切換、FDD到時分復用(TDD,Ti

個性化檯曆的製作方法

專利名稱::個性化檯曆的製作方法技術領域::本實用新型涉及一種檯曆,尤其涉及一種既顯示月曆、又能插入照片的個性化檯曆,屬於生活文化藝術用品領域。背景技術::公知的立式檯曆每頁皆由月曆和畫面兩部分構成,這兩部分都是事先印刷好,固定而不能更換的。畫面或為風景,或為模特、明星。功能單一局限性較大。特別是畫

一種實現縮放的視頻解碼方法

專利名稱:一種實現縮放的視頻解碼方法技術領域:本發明涉及視頻信號處理領域,特別是一種實現縮放的視頻解碼方法。背景技術: Mpeg標準是由運動圖像專家組(Moving Picture Expert Group,MPEG)開發的用於視頻和音頻壓縮的一系列演進的標準。按照Mpeg標準,視頻圖像壓縮編碼後包

基於加熱模壓的纖維增強PBT複合材料成型工藝的製作方法

本發明涉及一種基於加熱模壓的纖維增強pbt複合材料成型工藝。背景技術:熱塑性複合材料與傳統熱固性複合材料相比其具有較好的韌性和抗衝擊性能,此外其還具有可回收利用等優點。熱塑性塑料在液態時流動能力差,使得其與纖維結合浸潤困難。環狀對苯二甲酸丁二醇酯(cbt)是一種環狀預聚物,該材料力學性能差不適合做纖

一種pe滾塑儲槽的製作方法

專利名稱:一種pe滾塑儲槽的製作方法技術領域:一種PE滾塑儲槽一、 技術領域 本實用新型涉及一種PE滾塑儲槽,主要用於化工、染料、醫藥、農藥、冶金、稀土、機械、電子、電力、環保、紡織、釀造、釀造、食品、給水、排水等行業儲存液體使用。二、 背景技術 目前,化工液體耐腐蝕貯運設備,普遍使用傳統的玻璃鋼容

釘的製作方法

專利名稱:釘的製作方法技術領域:本實用新型涉及一種釘,尤其涉及一種可提供方便拔除的鐵(鋼)釘。背景技術:考慮到廢木材回收後再加工利用作業的方便性與安全性,根據環保規定,廢木材的回收是必須將釘於廢木材上的鐵(鋼)釘拔除。如圖1、圖2所示,目前用以釘入木材的鐵(鋼)釘10主要是在一釘體11的一端形成一尖

直流氧噴裝置的製作方法

專利名稱:直流氧噴裝置的製作方法技術領域:本實用新型涉及ー種醫療器械,具體地說是ー種直流氧噴裝置。背景技術:臨床上的放療過程極易造成患者的局部皮膚損傷和炎症,被稱為「放射性皮炎」。目前對於放射性皮炎的主要治療措施是塗抹藥膏,而放射性皮炎患者多伴有局部疼痛,對於止痛,多是通過ロ服或靜脈注射進行止痛治療

新型熱網閥門操作手輪的製作方法

專利名稱:新型熱網閥門操作手輪的製作方法技術領域:新型熱網閥門操作手輪技術領域:本實用新型涉及一種新型熱網閥門操作手輪,屬於機械領域。背景技術::閥門作為流體控制裝置應用廣泛,手輪傳動的閥門使用比例佔90%以上。國家標準中提及手輪所起作用為傳動功能,不作為閥門的運輸、起吊裝置,不承受軸向力。現有閥門

用來自動讀取管狀容器所載識別碼的裝置的製作方法

專利名稱:用來自動讀取管狀容器所載識別碼的裝置的製作方法背景技術:1-本發明所屬領域本發明涉及一種用來自動讀取管狀容器所載識別碼的裝置,其中的管狀容器被放在循環於配送鏈上的文檔匣或託架裝置中。本發明特別適用於,然而並非僅僅專用於,對引入自動分析系統的血液樣本試管之類的自動識別。本發明還涉及專為實現讀