變頻空調頻率控制方法及控制裝置與流程
2023-12-05 06:05:26 5

本發明屬於空氣調節技術領域,具體地說,是涉及調節室內空氣的空調,更具體地說,是涉及基於變頻空調頻率控制方法及控制裝置。
背景技術:
空調夏天可以製冷、冬天可以制熱,能夠調節室內溫度達到冬暖夏涼,為用戶提供舒適的環境。在空調為用戶提供舒適性的同時,伴隨而來的是與高能耗的矛盾。能量消耗不僅增加了用戶經濟負擔,也與節能環保的趨勢相背。因此,如何在利用空調為用戶提供舒適環境的同時降低空調的能耗,是目前空調器廠家一直在努力解決的問題。
為了解決製冷吹出冷風而導致不舒適的問題,可以基於室內換熱器的盤管溫度作為控制目標來控制壓縮機運行頻率的控制方法。現有盤管溫度控制過程中,盤管目標溫度均採用固定值,一般為固化在空調存儲器中的一個溫度固定值。在實際使用過程中,經常會存在一個現象:在保持用戶設定溫度不變的情況下,在室內溫度接近用戶設定溫度時,用戶反而感覺不舒適,尤其是在室內溼度不同的情況下,不舒適的感覺又會不同。經分析,這種現象是由於在室內溫度接近用戶設定溫度時基於室內換熱器的盤管溫度作為控制目標來控制壓縮機運行頻率、且盤管目標溫度為固定值所引起的。
由於換熱器的盤管溫度是關乎空調冷媒系統和整體空氣調節的關鍵參數,如果控制不當,可能會帶來空氣調節性能變差、降低舒適性的問題。因此,如何基於盤管溫度進行合理、舒適及節能控制,是亟待研究和解決的問題。
技術實現要素:
本發明的目的是提供一種變頻空調頻率控制方法及控制裝置,實現空調的節能、舒適控制。
為實現上述發明目的,本發明提供的變頻空調頻率控制方法採用下述技術方案予以實現:
一種變頻空調頻率控制方法,所述方法包括:
空調製冷運行,獲取實時室內環境溫度和設定室內目標溫度,計算所述實時室內環境溫度與所述設定室內目標溫度之間的溫差,作為實時室內溫差,根據所述實時室內溫差進行室溫PID運算,獲得第一頻率;採用具有紅外測距傳感器的紅外測距單元獲取空調所在室內的目標與空調之間的實時距離,根據已知的距離與頻率的對應關係獲取與所述實時距離對應的頻率,作為第二頻率;
將所述實時室內環境溫度與設定舒適溫度作比較;
若所述實時室內環境溫度不小於所述設定舒適溫度,執行下述的第一控制:選擇所述第一頻率與所述第二頻率中的較小值控制空調的壓縮機運行;
若所述實時室內環境溫度小於所述設定舒適溫度,執行下述的第二控制:獲取空調蒸發器的實時盤管溫度和盤管目標溫度,計算所述實時盤管溫度與所述盤管目標溫度之間的溫差,作為實時盤管溫差,根據所述實時盤管溫差進行盤溫PID運算,獲得第三頻率,選擇所述第一頻率、所述第二頻率及所述第三頻率中的較小值控制空調的壓縮機運行;所述盤管目標溫度根據室內的實時溼度確定,且滿足所述實時溼度大時所述盤管目標溫度小。
為實現前述發明目的,本發明提供的變頻空調頻率控制裝置採用下述技術方案予以實現:
一種變頻空調頻率控制裝置,所述裝置包括:
室內環境溫度獲取單元,用於獲取實時室內環境溫度;
盤管溫度獲取單元,用於獲取空調蒸發器的實時盤管溫度;
室溫PID運算單元,用於計算所述實時室內環境溫度和設定室內目標溫度之間的溫差,作為實時室內溫差,根據所述實時室內溫差進行PID運算,獲得並輸出第一頻率;
盤溫PID運算單元,用於計算所述實時盤管溫度和盤管目標溫度之間的溫差,作為實時盤管溫差,根據所述實時盤管溫差進行PID運算,獲得並輸出第三頻率;所述盤管目標溫度根據室內的實時溼度確定,且滿足所述實時溼度大時所述盤管目標溫度小;
紅外測距單元,具有紅外測距傳感器,用於獲取空調所在室內的目標與空調之間的實時距離;
第二頻率獲取單元,用於根據已知的距離與頻率的對應關係獲取與所述實時距離對應的頻率,作為第二頻率;
控制模式選擇單元,用於比較所述實時室內環境溫度與設定舒適溫度,並輸出比較結果作為控制模式選擇信號;
第一控制單元,用於在所述控制模式選擇單元輸出的比較結果為所述實時室內環境溫度不小於所述設定舒適溫度時,選擇所述第一頻率與所述第二頻率中的較小值作為目標頻率,根據所述目標頻率控制空調的壓縮機運行;
第二控制單元,用於在所述控制模式選擇單元輸出的比較結果為所述實時室內環境溫度小於所述設定舒適溫度時,選擇所述第一頻率、所述第二頻率及所述第三頻率中的較小值作為目標頻率,根據所述目標頻率控制空調的壓縮機運行。
與現有技術相比,本發明的優點和積極效果是:
本發明中,在對壓縮機進行頻率控制時,綜合考慮了溫度因素和目標與空調間的距離因素間的配合,實現了空調的節能運行和舒適送風。此外,對於溫度因素對壓縮機頻率的控制中,根據室內環境溫度與設定舒適溫度的大小,選擇採用室溫PID控制或採用基於蒸發器盤管溫度的盤溫PID控制,既能在室溫高時及時、快速對房間進行降溫,達到製冷目的,又可以將盤管溫度穩定在盤管目標溫度,使得空調出風溫度舒適,達到出風涼而不冷的舒適製冷效果。並且,盤溫PID控制過程中的盤管目標溫度根據室內的實時溼度確定,實時溼度大時盤管目標溫度小,使得在室內溼度大時控制盤管逼近並維持在較低的目標溫度,以凝結更多的空氣中的水分,達到降低空氣溼度、進一步提高室內空氣舒適性的目的。
結合附圖閱讀本發明的具體實施方式後,本發明的其他特點和優點將變得更加清楚。
附圖說明
圖1是本發明變頻空調頻率控制方法一個實施例的流程圖;
圖2是本發明變頻空調頻率控制裝置一個實施例的結構框圖。
具體實施方式
為了使本發明的目的、技術方案及優點更加清楚明白,以下將結合附圖和實施例,對本發明作進一步詳細說明。
請參見圖1,該圖所示為本發明變頻空調頻率控制方法一個實施例的流程圖。
如圖1所示,該實施例實現變頻空調頻率控制的方法採用具有下述步驟的流程來實現:
步驟11:空調製冷運行,獲取實時室內環境溫度、設定室內目標溫度,同時,獲取空調所在室內的目標與空調間的實時距離。
具體來說,在空調開機運行時,實時檢測空調所處房間的室內環境溫度,實時檢測的溫度作為實時室內環境溫度。所謂的實時室內環境溫度,是指在空調開機運行後,根據設定溫度採樣頻率不斷獲取並更新的室內環境溫度。實時室內環境溫度的獲取可以採用現有技術來實現。例如,通過設置在空調進風口或靠近空調進風口處的溫度傳感器檢測進風溫度,空調的主控板通過採集溫度傳感器的輸出信號並進行處理,從而獲取到進風溫度,並將該溫度作為實時室內環境溫度。
設定室內目標溫度是指希望室內環境所能達到的目標溫度,該設定室內目標溫度可以是用戶通過遙控器或空調控制終端或空調面板所輸入的一個溫度值,也可以是空調主控板自動調用的一個設定值。不管該溫度值採用哪種方式設定,均可被空調主控板獲取到。
空調開機運行後,除了實時檢測空調所處房間的實時室內環境溫度,還要實時檢測空調所在室內的目標,並確定目標與空調間的實時距離。所謂的實時距離,是在空調開機運行後,根據設定採樣頻率不斷獲取並更新的室內目標與空調之間的距離。目標的檢測及目標與空調間的距離,採用具有紅外測距傳感器的紅外測距單元來實現,結構簡單,容易實現,成本較低。具體來說,是在空調上設置紅外測距傳感器及相應的處理電路,利用紅外測距傳感器發出的紅外信號遇到障礙物目標後反射的反射強度進行目標遠近的檢測。
步驟12:計算實時室內環境溫度與設定室內目標溫度之間的溫差,作為實時室內溫差,根據實時室內溫差進行室溫PID運算,獲得第一頻率;根據已知的距離與頻率的對應關係獲取與實時距離對應的頻率,作為第二頻率。
主控板在獲取到實時室內環境溫度和設定室內目標溫度之後,計算兩者之間的溫差,作為實時室內溫差。然後,根據實時室內溫差進行室溫PID運算,獲得對壓縮機進行控制的一個頻率,並將該頻率定義為第一頻率。其中,根據溫差進行室溫PID運算、獲得對壓縮機進行控制的目標頻率的具體方法可以採用現有技術來實現,在此不作詳細闡述和限定。
同時,還根據已知的距離與頻率的對應關係獲取與實時距離對應的頻率,作為第二頻率。
具體而言,在空調主控板的存儲器中預先存儲有距離與頻率的對應關係,其中,距離是指室內目標與空調之間的距離,頻率是指壓縮機的運行頻率。優選的,距離與頻率的對應關係是由研發人員在理論指導下、經過大量的空調運轉模擬實驗所得到的,能夠儘可能兼顧空調送風舒適性與節能性。而且,距離與頻率間呈現正相關的關係。也即,距離越小,頻率也越低;反之亦然。而且,距離與頻率間的對應關係,可以通過特定的計算方式進行計算的一種關係,也可以是通過表格的形式一一對應的關係。如果為通過計算方式進行計算,則預先存儲計算方式,在獲得實時距離之後,根據實時距離及計算方式計算出實時距離對應的頻率並作為第二頻率。而若為通過表格的形式形成的一一對應的關係,在獲得實時距離之後,可以根據實時距離採取查表的方式讀取出實時距離對應的頻率並作為第二頻率。建立距離與頻率的對應關係的出發點為:目標與空調距離不同,對出風溫度的要求不同。在製冷模式下,為使得空調能夠為目標提供最為合理的出風舒適性,目標與空調距離較小時,期望升高出風溫度,避免溫度過低的風吹到目標而引起不適,則對壓縮機頻率進行限頻,在限頻之後,可以升高出風溫度,同時還可以降低能耗。
步驟13:判斷實時室內環境溫度是否小於設定舒適溫度。若是,執行步驟15;若為否,執行步驟14。
該步驟可以與步驟12同時進行,在此分為兩個步驟僅是為了更加清楚地表述該實施例的控制過程。在步驟11獲取到實時室內環境溫度之後,將實時室內環境溫度與設定舒適溫度作比較,並判斷實時室內環境溫度是否小於設定舒適溫度,以便根據比較結果執行步驟14或步驟15的控制。其中,設定舒適溫度可以是出廠時空調的一個默認設定溫度,也可以是由用戶自行選定並設置的一個設定溫度。如果是由用戶自行設定,空調可以給出一個參考溫度值,供用戶參考。例如,建議將該舒適溫度設定為27℃。
步驟14:如果步驟13判定實時室內環境溫度不小於設定舒適溫度,則執行如下的第一控制:選擇第一頻率與第二頻率中的較小值作為目標頻率,根據目標頻率控制空調的壓縮機運行。
如果實時室內環境溫度不小於設定舒適溫度,表明此時室內溫度較高,需要快速降溫。此情況下,比較步驟12得到的第一頻率和第二頻率,選擇兩者中的較小值,作為目標頻率,根據目標頻率控制空調的壓縮機運行。
步驟15:如果步驟13判定實時室內環境溫度小於設定舒適溫度,則執行如下的第二控制:獲取空調蒸發器的實時盤管溫度和設定盤管目標溫度,計算實時盤管溫度與盤管目標溫度之間的溫差,作為實時盤管溫差,根據實時盤管溫差進行盤溫PID運算,獲得第三頻率,選擇第一頻率、第二頻率及第三頻率中的較小值作為目標頻率,根據目標頻率控制空調的壓縮機運行。
如果步驟13判定室內溫度小於舒適溫度,為避免溫度過快下降導致體感不舒適,進一步考慮蒸發器盤管溫度,以便及時調整壓縮機運行頻率,使得蒸發器盤管溫度能夠穩定到盤管目標溫度,以調整空調出風溫度,達到涼而不冷的舒適出風效果。
具體來說,首先,獲取空調蒸發器的實時盤管溫度和盤管目標溫度,計算實時盤管溫度與盤管目標溫度之間的溫差,作為實時盤管溫差,根據實時盤管溫差進行盤溫PID運算,獲得第三頻率。
其中,蒸發器盤管溫度的檢測可通過在蒸發器上設置盤管溫度傳感器進行檢測。實時檢測出盤管溫度之後,計算實時盤管溫度與設定盤管目標溫度之間的溫差,將該溫差作為盤管溫差。其中,盤管目標溫度根據室內的實時溼度來實時確定,且滿足實時溼度大時盤管目標溫度小。然後,根據盤管溫差進行盤溫PID運算,獲得對壓縮機進行控制的目標頻率,並將該目標頻率定義為第三目標頻率。盤溫PID運算獲得對壓縮機進行控制的目標頻率的方法可以參考現有技術中的室溫PID運算而獲得壓縮機目標頻率的方法。其中,盤溫PID運算的初始頻率可以為一個設定的初始頻率。優選的,盤溫PID運算的初始頻率為步驟12判定實時室內環境溫度小於設定舒適溫度、進入第二控制過程時壓縮機的當前運行頻率。而且,該當前運行頻率至少是在壓縮機運行一段時間(如3min)之後的一個運行頻率。
然後,選擇第一頻率、第二頻率及第三頻率中的較小值作為目標頻率,根據目標頻率控制空調的壓縮機運行。
採用上述方法對空調壓縮機頻率進行控制,綜合考慮了溫度因素和目標與空調間的距離因素間的配合,實現了空調的節能運行和舒適送風。此外,在考慮溫度因素對壓縮機頻率的控制中,根據室內環境溫度與設定舒適溫度的大小,選擇採用室溫PID控制或採用基於蒸發器盤管溫度的盤溫PID控制,既能在室溫高時及時、快速對房間進行降溫,達到製冷目的,又可以將盤管溫度穩定在盤管目標溫度,使得空調出風溫度舒適,達到出風涼而不冷的舒適製冷效果。而且,盤溫PID控制過程中的盤管目標溫度根據室內的實時溼度確定,實時溼度大時盤管目標溫度小,使得在室內溼度大時控制盤管逼近並維持在較低的目標溫度,以凝結更多的空氣中的水分,達到降低空氣溼度、進一步提高室內空氣舒適性的目的。
作為優選的實施方式,根據室內的實時溼度確定盤管目標溫度,具體包括:
獲取室內的實時溼度,將實時溼度與舒適溼度範圍作比較。舒適溼度範圍為已知的、預先存儲的,是反映人體感受較為適宜的一個溼度範圍,譬如,舒適溼度範圍為相對溼度為40-60%。
若實時溼度屬於舒適溼度範圍,則將推薦盤管目標溫度確定為執行盤溫PID運算的實際盤管目標溫度。
若實時溼度不屬於舒適溼度範圍、且實時溼度大於舒適溼度範圍的上限值,將低於推薦盤管目標溫度的溫度確定為執行盤溫PID運算的實際盤管目標溫度。
其中,推薦盤管目標溫度是已知的、預先存儲的一個溫度,一般的,為研發人員經大量理論研究和實驗測試所獲得的、在舒適溼度下能夠送出溫度適宜的熱交換空氣的一個盤管溫度。當然,該推薦盤管目標溫度也可以通過授權而被修改,譬如,由售後人員在用戶家中通過特殊指令進行修改。
採用上述的方法根據實時溼度來確定盤管目標溫度時,如果實時溼度屬於舒適溼度範圍,則採用推薦盤管目標溫度作為實際盤管目標溫度,確保在執行盤溫PID控制時獲得適宜的空調出風。而如果實時溼度不屬於舒適溼度範圍,且實時溼度大於舒適溼度範圍的上限值,譬如,大於60%,表明此時室內溼度較大。此情況下,降低盤管目標溫度,具體來說是將低於推薦盤管目標溫度的溫度確定為執行盤溫PID運算的實際盤管目標溫度。如果實時溼度不屬於舒適溼度範圍、且實時溼度小於舒適溼度範圍的下限值,優選也將推薦盤管目標溫度作為實際盤管目標溫度,以保證獲得溫度適宜的空調出風。
而且,在執行第二控制的過程中,仍然不斷地獲取實時室內環境溫度,並比較實時室內環境溫度與設定舒適溫度的大小。一旦實時室內環境溫度不小於設定舒適溫度,則退出第二控制過程,轉入到第一控制過程,以使得室內溫度穩定在設定室內目標溫度。
作為優選的實施方式,在實時室內環境溫度不小於舒適溫度、且實時室內環境溫度與設定舒適溫度之差大於設定差值時,再退出第二控制過程,轉入到第一控制過程。通過合理選擇設定差值,例如,設定為1℃,可以確保盤管溫度不低於盤管目標溫度,保證出風涼而不冷的舒適性。
作為更優選的實施方式,空調主控板的存儲器中預先存儲有一個設定最高頻率,如果步驟14判定第一頻率和第二頻率中的較小值大於設定最高頻率,或者步驟15判定第一頻率、第二頻率及第三頻率中的較小值大於設定最高頻率,則將設定最高頻率作為目標頻率。也就是說,不管是根據哪個頻率控制壓縮機,均保證壓縮機的運行頻率不超過設定最高頻率。
請參見圖2,該圖示出了本發明變頻空調頻率控制裝置一個實施例的結構框圖。
如圖2所示,該實施例的變頻空調頻率控制裝置所包含的結構單元及其功能如下:
室內環境溫度獲取單元201,用於獲取實時室內環境溫度。
室溫PID運算單元202,用於計算室內環境溫度獲取單元201獲取的實時室內環境溫度和設定室內目標溫度之間的溫差,作為實時室內溫差,根據實時室內溫差進行PID運算,獲得並輸出第一頻率。
盤管溫度獲取單元203,用於獲取空調蒸發器的實時盤管溫度。
盤溫PID運算單元204,用於計算盤管溫度獲取單元203獲取的實時盤管溫度和盤管目標溫度之間的溫差,作為實時盤管溫差,根據實時盤管溫差進行PID運算,獲得並輸出第三頻率。其中,盤管目標溫度根據室內的實時溼度確定,且滿足實時溼度大時盤管目標溫度小。
紅外測距單元205,包括有紅外測距傳感器,用於實時獲取空調所在室內的目標與空調之間的實時距離。
第二頻率獲取單元206,用於根據已知的距離與頻率的對應關係獲取與實時距離對應的頻率,作為第二頻率。
控制模式選擇單元207,用於比較室內環境溫度獲取單元201所獲取的實時室內環境溫度與設定舒適溫度,並輸出比較結果作為控制模式選擇信號。
第一控制單元208,用於在控制模式選擇單元207輸出的比較結果為實時室內環境溫度不小於設定舒適溫度時,選擇室溫PID運算單元202輸出的第一頻率與第二頻率獲取單元206輸出的第二頻率中的較小值作為目標頻率,根據目標頻率控制空調的壓縮機運行。
第二控制單元209,用於在控制模式選擇單元207輸出的比較結果為實時室內環境溫度小於設定舒適溫度時,選擇室溫PID運算單元202輸出的第一頻率、第二頻率獲取單元206輸出的第二頻率及盤溫PID運算單元204輸出的第三頻率中的較小值作為目標頻率,根據目標頻率控制空調的壓縮機運行。
作為優選的實施方式,頻率控制裝置還可以包括:
室內溼度獲取單元,用於獲取室內的實時溼度。
實時溼度判斷單元,用於將實時溼度與舒適溼度範圍作比較,並輸出實時溼度與舒適溼度範圍的判斷結果。
盤管目標溫度確定單元,用於在實時溼度屬於舒適溼度範圍時將推薦盤管目標溫度確定為執行盤溫PID運算的實際盤管目標溫度並輸出至盤溫PID運算單元204;而在實時溼度不屬於舒適溼度範圍、且實時溼度大於舒適溼度範圍的上限值時,將低於推薦盤管目標溫度的溫度確定為執行盤溫PID運算的實際盤管目標溫度並輸出至盤溫PID運算單元204。
上述裝置中的各結構單元運行相應的軟體程序,並按照前述方法的流程執行空調頻率控制,實現空調的節能、舒適控制。
以上實施例僅用以說明本發明的技術方案,而非對其進行限制;儘管參照前述實施例對本發明進行了詳細的說明,對於本領域的普通技術人員來說,依然可以對前述實施例所記載的技術方案進行修改,或者對其中部分技術特徵進行等同替換;而這些修改或替換,並不使相應技術方案的本質脫離本發明所要求保護的技術方案的精神和範圍。