四邊形面積公式大全(圓內接四邊形的面積)
2023-10-20 22:27:23 1
圓內接四邊形的面積
如果給定圓的內接四邊形的邊長分別為a, b, c, d,設s=(a b c d)/2, 即四邊形周長的一半 那麼有四邊形的面積為:
![]()

證明:延長CB與DA相交於E (若DA平行於CB,則找另一條對邊,如果兩條對邊都平行則是該定理的特例), 設CE=x, DE=y,

我們用[X]表示圖形X的面積,利用三角形的求面積的海倫公式,(詳見本人主頁海倫公式的證明)

但三角形CDE與三角形ABE相似,隱含著:

由此可以推出:

根據相似性,有下列比例:

將上面的兩個式子相加:

將兩式相減:

由此求出海倫公式中的各項為:

將其帶入開頭的海倫公式裡:

最後得出四邊形ABCD的面積:

後記:上述公式是公元7世紀由一位印度數學家叫布拉馬古普塔(Brahmagupta)發現的,這個公式如果讓四邊形的一個邊消失,比如d=0,那麼四邊形就變成三角形,顯然就是海倫定理。同樣此處證明也利用了海倫定理。
,





![2022愛方向和生日是在[質量個性]中](http://img.xinsiji.cc/20220215/1604989894118215680.jpg)



