新四季網

無限不循環小數為什麼是無理數(為什麼無理數都是無限不循環小數)

2023-11-30 02:25:16 1

在上篇文章中,我向大家展示了為什麼所有的無限循環小數都可以用分數表示,以及如何將無限循環小數轉化為分數。

這篇文章,我們繼續介紹無限不循環小數與無理數之間的關係。

我們知道,無理數都是無限不循環小數,那麼為什麼是這樣呢?

一、畢達哥拉斯的觀點

古希臘數學家畢達哥拉斯認為萬物都可以用整數或者整數之比表示

整數之比按照現在的數學語言,相當於分數。按照畢達哥拉斯的觀點,數只有整數和整數之比(分數)這兩種。

不過,後來畢達哥拉斯發現了勾股定理,他的這個觀點很快就迎來了質疑。

二、古希臘人眼中的勾股定理

平時我們對勾股定律的描述是,直角三角形直角邊的平方和等於斜邊的平方。不過古希臘人陳述勾股定理用的卻是幾何術語而不是數,描述方式如下:

建立在兩個較小邊上的正方形的面積之和等於建立在最長邊(斜邊,即直角所對的邊)上的正方形的面積。

幾何圖形描述如下:

正方形ABFG面積 正方形ACKH面積=正方形BCED面積(AB*AB AC*AC=BC*BC)

雖然勾股定理是畢達哥拉斯發現的,但是他沒有留下勾股定理的證明資料,今天我們能夠看到最早關於勾股定理的證明方法,是歐幾裡得在《幾何原本》「第1卷 平面幾何基礎」 命題47中給予的證明,他是通過在上圖的基礎上添加輔助線來證明的。這裡再多說一句,勾股定理的嚴格證明,其實很難。歐幾裡得為了證明勾股定理,在《幾何原本》中足足引用了3條定義、4條公設、5條公理以及用到提前已經證明好的25個命題的結論,才完成了勾股定理的證明。

三、無理數的發現過程

勾股定理被畢達哥拉斯發現之後,畢達哥拉斯學派成員裡就有人提出了一個問題:

如果有一個邊長是一個單位長的正方形,以及最長邊上面積是這個正方形面積2倍的另一個正方形,那麼另一個正方形的邊與這個正方形的邊的比是多少?

這個時候我們還是引用上面那個圖簡單分析一下這個問題,首先我們先畫出這個問題的圖形出來,如下圖所示:

假設正方形ABFG面積為a*a,最長邊上正方形面積為2a*a,那麼BC邊與AB邊長度的比是多少?

我們來分析一下這個問題,畢達哥拉斯不是提出「萬物都可以用整數或者整數之比表示」,首先我們可以很快排除BC邊的長為整數:

如果我們假設a=1,那麼AB=1,BC*BC=2。我們知道,沒有哪個整數的平方是等於2的,因為1*1=1、2*2=4,1和2之間沒有整數,這樣我們就可以排除BC邊的長為整數。

即然BC邊的長不是整數,那按照畢達哥拉斯「萬物都可以用整數或者整數之比表示」的說法,BC邊就只可能表示為兩個整數的比。

這時候,就有人提出了一個推理過程:

假設BC的長可以表示為2個整數的比,並且這2個整數沒有除了單位1之外的公因子(如果2個整數之間有除了單位1以外的公因子,我們可以約分掉公因子變成最簡形式,也就是2個整數沒有除了單位1之外的公因子),這2個整數我們命名為b和a,且b的平方正好是a的平方的2倍(b*b=2a*a),這時b就相當於圖上BC邊的長,a就相當於圖上AB邊的長度。

這時我們就能得出一個結論:b*b一定是偶數,且是4的倍數。那麼為什麼呢?下面我們給予證明:

我們已經假設a、b是整數,b*b=2a*a,那麼b*b肯定是偶數。又b*b是兩個相同的整數相乘,且還是偶數,那麼b*b最小數值是4。(整數中最小的數值是1、第二小的是2,而1*1=1是奇數與b*b是偶數不符,2*2=4與b*b是偶數符合,所以b*b的最小數值是4),這時我們就能得出b*b是4的倍數。

這時我們再畫一個圖形,如下圖所示,取BC中點H,以BH為邊作一個正方形BHOI。在這裡我們設BH的長度為c,那麼BC=2BH,也就是b=2c。

BC邊長=b,BH邊長=c,b=2c

上面我們已經證明了b*b是4的倍數,那麼b肯定是偶數。又b=2c,b是偶數,那麼c肯定是一個整數。

接下來我們繼續

因為b=2c,那麼b*b=2c*2c=4c*c

又因為b*b=2a*a,所以a*a=2c*c

之前我們通過b*b=2a*a證明了b*b的值是4的倍數,同理我們也可以通過a*a=2c*c得出a*a的值也是4的倍數。

接下來就是見證奇蹟的時候了:

因為b*b與a*a都是4的倍數,那麼b和a肯定都是偶數,那麼b和a之間肯定有公因子2。

那麼問題就來了,b和a有公因子2,與我們開始的假設"b與a之間沒有除了1以外的公因子"矛盾。而b和a之間有公因子2,我們是依據假設和勾股定理推倒出來的。這就只能說明一個問題,要麼是假設錯了、要麼就是勾股定理是錯的,還有就是假設和勾股定理都是錯的。

既然畢達哥拉斯已經證明了勾股定理是對的,那麼就只有一種可能,假設錯了,也就是BC邊的長無法用2個整數的比表示。加上之前我們證明了BC邊的長不是整數,這時我們又可以得出結論:畢達哥拉斯有關"萬物都可以用整數或者整數之比表示"的結論是錯的。你看,BC的邊長就既不是整數,也不能用整數之比來表示。

類似BC的長度這類無法用整數和整數之比來表示的數,後來人們把這類數稱為"無理性的數",也就是無理數

四、為什麼無理數都是無限不循環小數?

我們知道所有的數用小數來區分,只有兩種:無限循環小數與無限不循環小數。在上篇文章中,我們已經證明了所有的無限循環小數都可以用分數(整數之比)表示,而無理數無法用整數之比(分數)表示,所以無理數只可能是無限不循環小數。

五、為什麼無限循環小數都能用分數表示

在上高中的時候,我們都學過等比數列的求和公式:

這個公式的推導過程其實很簡單,運用的是錯位相減法;

當q≠1時,

所以,兩式相減,可得:

下面我用0.999…與0.67336733…進行舉例:

1、如何將0.999…轉化為分數?

首先0.999…可以看成:

為了用上等比數列的求和公式,我們需要將上述式子向等比數列的表達形式靠齊:

將上述式子和等比數列求和公式進行比較:

當n趨向於無窮大時,

,於是:

2、如何將0.673367336733…轉化為分數?

其實方法和上面是一樣的,為了用上等比數列的求和公式,可以將0.673367336733…看成:

將上述式子和等比數列求和公式進行比較:

當n趨向於無窮大時,

,於是:

將上述式子繼續簡化,可得:

其它的無限循環小數,轉化為分數的過程和上述步驟其實是一樣的,這裡我就不再舉例。

好了,這一講就到這裡了。

我是一個致力於科普數學、物理的科技媒體。想了解更多相關的知識,歡迎關注我的微信公眾號科學發現之歷程,期待你的到來。

,
同类文章
葬禮的夢想

葬禮的夢想

夢見葬禮,我得到了這個夢想,五個要素的五個要素,水火只好,主要名字在外面,職業生涯良好,一切都應該對待他人治療誠意,由於小,吉利的冬天夢想,秋天的夢是不吉利的
找到手機是什麼意思?

找到手機是什麼意思?

找到手機是什麼意思?五次選舉的五個要素是兩名士兵的跡象。與他溝通很好。這是非常財富,它擅長運作,職業是仙人的標誌。單身男人有這個夢想,主要生活可以有人幫忙
我不怎麼想?

我不怎麼想?

我做了什麼意味著看到米飯烹飪?我得到了這個夢想,五線的主要土壤,但是Tu Ke水是錢的跡象,職業生涯更加真誠。他真誠地誠實。這是豐富的,這是夏瑞的巨星
夢想你的意思是什麼?

夢想你的意思是什麼?

你是什​​麼意思夢想的夢想?夢想,主要木材的五個要素,水的跡象,主營業務,主營業務,案子應該抓住魅力,不能疏忽,春天夢想的吉利夢想夏天的夢想不幸。詢問學者夢想
拯救夢想

拯救夢想

拯救夢想什麼意思?你夢想著拯救人嗎?拯救人們的夢想有一個現實,也有夢想的主觀想像力,請參閱週宮官方網站拯救人民夢想的詳細解釋。夢想著敵人被拯救出來
2022愛方向和生日是在[質量個性]中

2022愛方向和生日是在[質量個性]中

[救生員]有人說,在出生88天之前,胎兒已經知道哪天的出生,如何有優質的個性,將走在什麼樣的愛情之旅,將與生活生活有什么生活。今天
夢想切割剪裁

夢想切割剪裁

夢想切割剪裁什麼意思?你夢想切你的手是好的嗎?夢想切割手工切割手有一個真正的影響和反應,也有夢想的主觀想像力。請參閱官方網站夢想的細節,以削減手
夢想著親人死了

夢想著親人死了

夢想著親人死了什麼意思?你夢想夢想你的親人死嗎?夢想有一個現實的影響和反應,還有夢想的主觀想像力,請參閱夢想世界夢想死亡的親屬的詳細解釋
夢想搶劫

夢想搶劫

夢想搶劫什麼意思?你夢想搶劫嗎?夢想著搶劫有一個現實的影響和反應,也有夢想的主觀想像力,請參閱週恭吉夢官方網站的詳細解釋。夢想搶劫
夢想缺乏缺乏紊亂

夢想缺乏缺乏紊亂

夢想缺乏缺乏紊亂什麼意思?你夢想缺乏異常藥物嗎?夢想缺乏現實世界的影響和現實,還有夢想的主觀想像,請看官方網站的夢想組織缺乏異常藥物。我覺得有些東西缺失了