新四季網

複合微積分公式大全(Fundamentaltheoremof)

2023-05-21 23:33:15 2

The Fundamental Theorem of Calculus is appropriately named because it establishes a connections between the two branches of calculus: differential calculus and integral calculus. Differential calculus arose from the tangent problem, whereas integral calculus arose from a seemingly unrelateed problem, the area problem. Newton's mentor at Cambridge, Isaac Barrow(1630-1677), discovered that these two problems are actually closely related. In fact, he realized that differentiation and integration are inverse processes. The Fundamental Theorem of Calculus gives the precise inverse relationship between the derivative and the integral. It was Newton and Leibniz who exploited this relationship and used it to develop calculus into a systematic mathematical method. In particular, they saw that the Fundamental Theorem of Calculus enabled them to compute areas and integrals very easily without having to compute them as limits of sums.

tangent ['tændʒ(ə)nt] n.切線;正切

limits of sums:極限和,分割→求和→求極限

The first part of the Funcamental Theorem deals with functions defined by an equation of the form

where f is a continuous function on [a,b] and x varies between a and b. Observe that F depend only on x, which appears as the variable upper limit in the integral. If x is a fixed number, then the integral A(x) is a definite number. If we then let x vary, the number A(x) also varies and define a function of x denoted by A(x)

For a continuous function y = f(x) whose graph is plotted as a curve, each value of x has a corresponding area function A(x), representing the area beneath the curve between 0 and x. The function A(x) may not be known, but it is given that it represents the area under the curve.

Look at the graphic below:

The area shaded in red stripes can be estimated as h times f(x). Alternatively, if the function A(x) were known, it could be computed exactly as A(x h) − A(x). These two values are approximately equal, particularly for small h.

The area under the curve between x and x h could be computed by finding the area between 0 and x h, then subtracting the area between 0 and x. In other words, the area of this 「strip」 would be A(x h) − A(x).

There is another way to estimate the area of this same strip. As shown in the accompanying figure, h is multiplied by f(x) to find the area of a rectangle that is approximately the same size as this strip. So:

A(x h) − A(x) ≈ f(x)·h

In fact, this estimate becomes a perfect equality if we add the red portion of the "excess" area shown in the diagram. So:

A(x h) − A(x) ≈ f(x)·h (Red Excess)

As h approaches 0 in the limit, the last fraction can be shown to go to zero. This is true because the area of the red portion of excess region is less than or equal to the area of the tiny black-bordered rectangle. More precisely,

By the continuity of f, the latter expression tends to zero as h does. Therefore, the left-hand side tends to zero as h does, which implies

This implies f(x) = A′(x). That is, the derivative of the area function A(x) exists and is the original function f(x); so, the area function is simply an antiderivative of the original function. Computing the derivative of a function and 「finding the area」 under its curve are "opposite" operations. This is the crux of the Fundamental Theorem of Calculus.

crux [krʌks] 癥結;十字座;關鍵;難題

Physical intuition:

Intuitively, the theorem simply states that the sum of infinitesimal changes in a quantity over time (or over some other variable) adds up to the net change in the quantity.

Imagine for example using a stopwatch to mark-off tiny increments of time as a car travels down a highway. Imagine also looking at the car's speedometer as it travels, so that at every moment you know the velocity of the car. To understand the power of this theorem, imagine also that you are not allowed to look out the window of the car, so that you have no direct evidence of how far the car has traveled.

For any tiny interval of time in the car, you could calculate how far the car has traveled in that interval by multiplying the current speed of the car times the length of that tiny interval of time. (This is because distance = speed × time.)

Now imagine doing this instant after instant, so that for every tiny interval of time you know how far the car has traveled. In principle, you could then calculate the total distance traveled in the car (even though you've never looked out the window) by simply summing-up all those tiny distances.

distance traveled = ∑ the velocity at any instant × a tiny interval of time

In other words,

distance traveled = v(t) × △t

On the right hand side of this equation, as △t becomes infinitesimally small, the operation of "summing up" corresponds to integration. So what we've shown is that the integral of the velocity function can be used to compute how far the car has traveled.

Now remember that the velocity function is simply the derivative of the position function. So what we have really shown is that integrating the velocity simply recovers the original position function. This is the basic idea of the theorem: that integration and differentiation are closely related operations, each essentially being the inverse of the other.

In other words, in terms of one's physical intuition, the theorem simply states that the sum of the changes in a quantity over time (such as position, as calculated by multiplying velocity times time) adds up to the total net change in the quantity. Or to put this more generally:

Given a quantity x that changes over some variable t, and

Given the velocity v(t) with which that quantity changes over that variable

then the idea that "distance equals speed times time" corresponds to the statement

dx = v(t)dt

meaning that one can recover the original function x(t) by integrating its derivative, the velocity v(t), over t.

Corollary推論

The fundamental theorem is often employed to compute the definite integral of a function f for which an antiderivative F is known. Specifically, if f is a real-valued continuous function on [a,b] and F is an antiderivative of f in [a,b] then

-End-

,
同类文章
葬禮的夢想

葬禮的夢想

夢見葬禮,我得到了這個夢想,五個要素的五個要素,水火只好,主要名字在外面,職業生涯良好,一切都應該對待他人治療誠意,由於小,吉利的冬天夢想,秋天的夢是不吉利的
找到手機是什麼意思?

找到手機是什麼意思?

找到手機是什麼意思?五次選舉的五個要素是兩名士兵的跡象。與他溝通很好。這是非常財富,它擅長運作,職業是仙人的標誌。單身男人有這個夢想,主要生活可以有人幫忙
我不怎麼想?

我不怎麼想?

我做了什麼意味著看到米飯烹飪?我得到了這個夢想,五線的主要土壤,但是Tu Ke水是錢的跡象,職業生涯更加真誠。他真誠地誠實。這是豐富的,這是夏瑞的巨星
夢想你的意思是什麼?

夢想你的意思是什麼?

你是什​​麼意思夢想的夢想?夢想,主要木材的五個要素,水的跡象,主營業務,主營業務,案子應該抓住魅力,不能疏忽,春天夢想的吉利夢想夏天的夢想不幸。詢問學者夢想
拯救夢想

拯救夢想

拯救夢想什麼意思?你夢想著拯救人嗎?拯救人們的夢想有一個現實,也有夢想的主觀想像力,請參閱週宮官方網站拯救人民夢想的詳細解釋。夢想著敵人被拯救出來
2022愛方向和生日是在[質量個性]中

2022愛方向和生日是在[質量個性]中

[救生員]有人說,在出生88天之前,胎兒已經知道哪天的出生,如何有優質的個性,將走在什麼樣的愛情之旅,將與生活生活有什么生活。今天
夢想切割剪裁

夢想切割剪裁

夢想切割剪裁什麼意思?你夢想切你的手是好的嗎?夢想切割手工切割手有一個真正的影響和反應,也有夢想的主觀想像力。請參閱官方網站夢想的細節,以削減手
夢想著親人死了

夢想著親人死了

夢想著親人死了什麼意思?你夢想夢想你的親人死嗎?夢想有一個現實的影響和反應,還有夢想的主觀想像力,請參閱夢想世界夢想死亡的親屬的詳細解釋
夢想搶劫

夢想搶劫

夢想搶劫什麼意思?你夢想搶劫嗎?夢想著搶劫有一個現實的影響和反應,也有夢想的主觀想像力,請參閱週恭吉夢官方網站的詳細解釋。夢想搶劫
夢想缺乏缺乏紊亂

夢想缺乏缺乏紊亂

夢想缺乏缺乏紊亂什麼意思?你夢想缺乏異常藥物嗎?夢想缺乏現實世界的影響和現實,還有夢想的主觀想像,請看官方網站的夢想組織缺乏異常藥物。我覺得有些東西缺失了